REFERENCES


• Axelsson T, Shavorskaya O and Lagercrantz U (2001) Multiple flowering time QTLs within several *Brassica* species could be the result of duplicated copies of one ancestral gene. Genome 44: 856–864


• Bao XM and Ohlrogge J (1999) Supply of fatty acid is one limiting factor in the accumulation of triacylglycerol in developing embryos. Plant Physiology 120: 1057–1062

• Basha SD and Sujatha M (2007) Inter and intra-population variability of *Jatropha curcas* (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156: 375–386

• Basha SD and Sujatha M (2009) Genetic analysis of *Jatropha* species and interspecific hybrids of *Jatropha curcas* using nuclear and organelle specific markers. Euphytica 168: 197-214


• Callow JA, Ford-Lloyd BV and Newbury HJ (1998) Biotechnology and plant genetic 
resources: conservation and use. Euphytica 101: 49–76

• Cannon SB, Zhu H, Baumgarten AM, Spangler R, May G, Cook DR and Young ND 
(2002) Diversity, distribution, and ancient taxonomic relationships within the TIR and 
562

• Cardinal AJ, Burton JW, Camacho-Roger AM, Yang JH, Wilson RF and Dewey RE 
(2007) Molecular analysis of Soybean lines with low palmitic acid content in the seed oil. 
Crop Science 47: 304–310

Computational and experimental characterization of physically clustered simple sequence 
repeats in plants. Genetics 156: 847–854

• Carvalho CR, Clarindo WR, Pracxa MM, Araujo FS and Carels N (2008) Genome size, 
base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant 
Science 174: 613–617

• Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, Sande E, Novak S, Collins C, 
CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. 
Proceeding of National Academy of Sciences USA 95: 13018–13023

Transferability and polymorphism of barley EST-SSR markers used for phylogenetic 
analysis in Hordeum chilense. BMC Plant Biology 8: 97-105


• Dangl JL and Jones JD (2001) Plant pathogens and integrated defense responses to infection. Nature 411: 826–833


161
• Dimov Z and Moller C (2010) Genetic variation for saturated fatty acid content in a collection of European winter oilseed rape material (Brassica napus). Plant Breeding 129: 82-86


• Edwards YJ, Elgar G, Clark MS and Bishop MJ (1998) The identification and characterization of microsatellites in the compact genome of the Japanese pufferfish,


• Ginwal HS, Phartyal SS, Rawat PS and Srivastava RL (2005) Seed source variation in morphology, germination and seedling growth of *Jatropha curcas* Linn. in Central India. Silvae Genetics 54(2): 76–80


• Ha BK, Monteros MJ and Boerma HR (2010) Development of SNP assays associated with oleic acid QTLs in N00-3350 soybean. Euphytica 176: 403–415


• Lacombe S and Berville A (2001) A dominant mutation for high oleic acid content in sunflower (Helianthus annuus L.) seed oil is genetically linked to a single oleate desaturase RFLP locus. Molecular Breeding 8: 129-137


• Leister D, Ballvora A, Salamini F and Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genetics 14: 421-429


• Lopes MS and Maciel GB (2006) Isolation and characterization of simple sequence repeat loci in *Rubus hochstetterorum* and their use in other species from the Rosaceae family. Molecular Ecology 6(3): 750–752


• Makkar HPS, Becker K, Sporen F and Wink M (1997) Studies on nutritive potential and toxic constituents of different provenances of *Jatropha curcas*. Journal of Agricultural Food Chemistry 45: 3152-3157

• Marques CM, Brondani RPV, Grattapaglia D and Sederoff R (2002) Conservation and
synteny of SSR loci and QTLs for vegetative propagation in four *Eucalyptus* species.
Theoretical and Applied Genetics 105: 474–478

• Martin GB, Bogdanove AJ and Sessa G (2003) Understanding the functions of plant

• Martínez-Zamora MG, Castagnaro AP and Diaz-Ricci JC (2004) Isolation and diversity
analysis of resistance gene analogues (RGAs) from cultivated and wild strawberries.
Molecular Genetics and Genomics 272: 480-487

• Mayer KM and Shanklin J (2007) Identification of amino acid residues involved in
substrate specificity of plant acyl-ACP thioesterases using a bioinformatics-guided
approach. BMC Plant Biology 7: 1-15

• McCormick RL, Graboski MS, Alleman TL and Herring AM (2001) Impact of biodiesel
source material and chemical structure on emissions of criteria pollutants from a heavy-
duty engine. Environmental Science and Technology 35: 1742–1747

adaptable guards. Genome Biology 7: 212-222

• Metzgar D, Bytof J and Wills C (2000) Selection against frameshift mutations limits
microsatellite expansion in coding DNA. Genome Research 10:72-80

• Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW and
Young ND (1999) Plant disease resistance genes encode members of an ancient and
diverse protein family within the nucleotide-binding superfamily. Plant Journal 20: 317–
332


• Moran C (1993) Microsatellite repeats in pig (Sus domestica) and chicken (Gallus domesticus) genomes. Journal of Heredity 84: 274–280


• Morgante M and Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant Journal 3: 175-182


• Murray MG and Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8: 4321–4325


gene homologues in dicot and cereal genomes. Journal of Molecular Evolution 50: 203–
213

Nature Genetics 23: 387-389

• Patil V and Singh K (1991) Oil gloom to oil boom – *Jatropha curcas* a promising agro-
forestry crop. Shree Offset Press, Nashik

• Peakall R and Smouse PE (2006) GENALEX 6: genetic analysis in excel population
genetic software for teaching and research. Molecular Ecology Notes 6: 288–295

Molecular analysis of the high stearic acid content in sunflower mutant CAS-14.
Theoretical and Applied Genetics 112(5): 867 875

• Pollard MR, Anderson L, Fan C, Hawkins DJ and Davies HM (1991) A specific acyl-
ACP thioesterase implicated in medium chain fatty-acid production in immature
cotyledons of *Umbellularia californica*. Archives of Biochemistry and Biophysics 284:
306–312

• Poncet V, Rondeau M, Tranchant C, Cayrel A, Hamon S, de Kochko A and Hamon P
(2006) SSR mining in coffee tree EST databases: potential use of EST-SSRs as markers
for the *Coffea* genus. Molecular Genetics and Genomics 276: 436–449

analysis of *Carica papaya* reveals a small NBS resistance gene family. Molecular
Genetics and Genomics 281: 609–626


• Rob C and Durka W (2006) Isolation and characterization of microsatellite markers in the invasive shrub *Mahonia aquifolium* (Berberidaceae) and their applicability in related species. Molecular Ecology 6: 948–950


• Rohlf FJ (2005) NTSYS-pc numerical taxonomy and multivariate analysis system, version 2.2. Exeter Software, New York, USA: Exeter Software


• Senior ML and Heun M (1993) Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome 36: 884–889


map to clusters of resistance genes in lettuce. Molecular Plant Microbe Interaction 11: 815-823


- Sneath PHA and Sokal RR (1973) Numerical taxonomy- The principles and practice of numerical classification. Freeman Press, San Francisco, California, USA, 573


• Thelen JJ and Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metabolic Engineering 4: 12–21


array of rice eating and cooking qualities. Proceeding of National Academy of Sciences USA 106: 21760-21765


182
• Wolfe KH, Gouy M, Yang YW, Sharp PM and Li WH (1989) Date of the monocot–dicot divergence estimated from chloroplast DNA sequence data. Proceeding of National Academy of Sciences USA 86: 6201–6205


• Yang X, Guo Y, Yan J, Zhang J, Song T, Rocheford T and Li JS (2010) Major and minor QTL and epistasis contribute to fatty acid compositions and oil concentration in high-oil maize. Theoretical and Applied Genetics 120: 665–678


• Zonneveld BJM, Leitch IJ and Bennett MD (2005) First nuclear DNA amounts in more than 300 angiosperms. Annals of Botany 96: 229–244