LIST OF FIGURES

Figure 1.1 Conventional frequency division multiplexing.

Figure 1.2 Orthogonal frequency division multiplexing.

Figure 1.3 The signal waveforms to show the orthogonality among subcarriers in (a) time-domain and (b) frequency domain representation.

Figure 1.4 Block diagram of OFDM system.

Figure 1.5 Small and large-scale propagation model versus distance.

Figure 2.1 System model for the OFDM digital communication systems.

Figure 2.2 Comparison between the proposed improved ICI cancellation schemes with the self -cancellation scheme for BPSK OFDM system.

Figure 2.3 Comparison between proposed conjugate ICI cancellation schemes with self cancellation scheme for 16 QAM OFDM system.

Figure 2.4 Carrier to interference ratio (CIR) versus normalized frequency offset and comparison of the proposed scheme.

Figure 2.5 Comparison of the ICI coefficient before and after cancellation of ICI.

Figure 3.1 Block diagram of the repeated correlative coding OFDM communication system

Figure 3.2 The CIR characteristics of the normalized frequency offset.

Figure 3.3 BER comparisons for $\varepsilon = 0.05$ of proposed BPSK OFDM system with ICI self-cancellation method and correlative coding scheme.

Figure 4.1 The average BER performance of the BPSK OFDM system over correlated Nakagami-m fading for various values of the fading parameter.

Figure 4.2 The average BER performance of the BPSK OFDM system over correlated Nakagami-m fading for different values of the channel length.

Figure 4.3 The average BER performance of the BPSK OFDM system over correlated Nakagami-m fading for various values of the diversity receivers.

Figure 4.4 The average BER performance of the BPSK OFDM system over correlated Nakagami-m fading for the various values of correlation coefficients.
Figure 4.5 The BER compression of the proposed BPSK OFDM system with Kang et al. [22] scheme.

Figure 4.6 The SER of MRC over correlated Nakagami-\(m\) fading for 4-QAM OFDM system with several correlation coefficients.

Figure 4.7 The SER of MRC over correlated Nakagami-\(m\) fading for 4-QAM OFDM system for the various combined paths.

Figure 4.8 The outage probability versus average SNR for the several values of correlation coefficients.

Figure 4.9 The outage probability versus correlation coefficient for the various values of diversity.

Figure 4.10 Characteristics of the outage probability versus Nakagami-\(m\) fading parameter.

Figure 5.1 System model for flat fading channel.

Figure 5.2 Capacity with optimal rate adaptation (\(C_{ORA}\)) versus SNR for various diversity receivers.

Figure 5.3 Capacity with optimal rate adaptation (\(C_{UHA}\)) versus SNR for various of correlation coefficient.

Figure 5.4 The channel capacity for optimal rate adaptation (\(C_{OPRA}\)) versus SNR for various diversity receivers.

Figure 5.5 The channel capacity for optimal rate adaptation (\(C_{OPRA}\)) versus SNR for various of correlation coefficients.

Figure 5.6 The channel inversions with fixed rate (CIFR) versus SNR for various diversity receivers.

Figure 5.7 The channel inversions with fixed rate (CIFR) versus SNR for various correlation coefficients.

Figure 5.8 The channel capacity with truncated channel inversion (\(C_{TCIFR}\)) versus cut-off SNR (\(\gamma_0\)) for various value of SNR.

Figure 5.9 The channel capacity with truncated channel inversion (\(C_{TCIFR}\)) versus MRC diversity.

Figure 5.10 The channel capacity with truncated channel inversion (\(C_{TCIFR}\)) versus cut-off SNR (\(\gamma_0\)) for the various value of correlation coefficients.
Figure 5.11 Comparison of the channel capacity with optimal rate adaptation (C_{ORA}) versus correlation coefficient (ρ) for diversity $M - 3$ for different values of SNR.

Figure 5.12 Comparison of the channel capacity for optimal rate adaptation (C_{OPIR}) versus SNR for several of correlation coefficient.

Figure 5.13. Comparison of channel inversion with fixed rate (CIFR) versus SNR for various correlation coefficients.

Figure 5.14. The channel capacity with truncated channel inversion (C_{TCIFR}) versus cut-off SNR (γ_0) for various correlation coefficients.

Figure 6.1 Average BER versus SNR plot for BPSK modulation scheme over generalized-K fading channel with M-branch MRC diversity.

Figure 6.2 Average SER versus SNR for M-QAM modulation scheme over generalized-K fading channel with M-branch MRC diversity.

Figure 6.3 Outage probabilities versus SNR for generalized-K fading channel with M-branch MRC diversity.

Figure 7.1 The channel capacity for optimal rate adaptation (C_{ORA}) versus SNR for heavy shadowing ($k = 1.0931$) and light shadowing ($k = 75.11$).

Figure 7.2 The channel capacity for optimal rate adaptation (C_{ORA}) versus fading parameter.

Figure 7.3 The channel capacity for optimal rate and power adaptation (C_{OPRA}) versus SNR plot for heavy shadowing ($k = 1.0931$) and light shadowing ($k = 75.11$).

Figure 7.4 The capacity for channel inversion with fixed rate (C_{CIFR}) versus SNR for light shadowing ($k = 75.11$) and heavy shadowing ($k = 1.0931$).

Figure 7.5 The channel capacity for channel inversion with fixed rate (C_{CIFR}) versus fading parameter.

Figure 7.6 The channel capacity with truncated channel inversion (C_{TCIFR}) versus cutoff SNR (γ_0), MRC diversity ($M = 1$).
Figure 7.7 The channel capacity with truncated channel inversion (C_{TClFR}) versus MRC diversity, cutoff(γ_o) = 10 dB and average SNR($\bar{\gamma}$) = 15 dB.

Figure 7.8 Comparison channel capacity for optimal rate adaptation (C_{ora}) with proposed method and PDF based method [113].

Figure 7.9 Comparison channel capacity for optimal rate adaptation (C_{ora}) with proposed method and PDF based method [114].

LIST OF TABLE

Table 3.1 BER for different normalized frequency offset for different ICI cancellation scheme.