CHAPTER - 05

COMMUTATIVITY PRESERVING DERIVATIONS IN RINGS

§ 5.1 INTRODUCTION

This chapter has been devoted to the study of commutativity-preserving derivations in prime and semi-prime rings. Most of the results of this chapter are based on the work of Daif and Bell [41], Bell and Daif ([10], [9]), Deng and Ashraf [42] etc.

Section 5.2 begins with a result due to Daif and Bell [41] which states that if R is a semi-prime ring and I is a non-zero ideal of R and if R admits a derivation d for which either xy + d(xy) = yx + d(yx) or xy - d(xy) = yx - d(yx) for all x, y ∈ I, then I is a central ideal. In section 5.3 some results based on commutativity of prime and semi-prime rings admitting strong commutativity-preserving derivations and endomorphisms are given. Section 5.4 opens with a result due to Deng and Ashraf [42] in which the mappings F and G of a ring R satisfy [F(x), G(y)] = [x, y], for all x, y in a subset of R. Thus, they introduced a more general concept than the strong commutativity-preserving mappings and obtained certain results on commutativity of a ring R. In the last section of this chapter generalizations of the results of section 5.2 which are due to Bell and Daif [9] have been presented. Examples are also given at the proper places to justify the hypothesis of the various theorems.

§ 5.2

In the year 1992, Daif and Bell [41] investigated commutativity
of a ring R with a derivation d satisfying either of the properties $xy + d(xy) = yx + d(yx)$ or $xy - d(xy) = yx - d(yx)$, for all x, y in an ideal of the ring R. In fact they proved the following:

Theorem 5.2.1 ([41, Theorem 3]). Let R be a semi-prime ring and I a non-zero ideal of R. If R admits a derivation d such that either $xy + d(xy) = yx + d(yx)$ or $xy - d(xy) = yx - d(yx)$, for all x, y in an ideal of the ring R. Then I is a central ideal.

Following are the consequences of the above theorem.

Corollary 5.2.1. Let R be a prime ring and I a non-zero ideal of R. If R admits a derivation d such that either $xy + d(xy) = yx + d(yx)$ or $xy - d(xy) = yx - d(yx)$, for all x, y in an ideal of the ring R. Then R is commutative.

Corollary 5.2.2. Let R be a semi-prime ring admitting a derivation d for which either $xy + d(xy) - yx - d(yx)$ or $xy - d(xy) = yx - d(yx)$, for all x, y in R. Then R is commutative.

For developing the proof of the above theorem we need the following Lemmas. Lemma 5.2.1 contain some well-known results on prime and semi-prime rings.

Lemma 5.2.1 (i). If R is a semi-prime ring, then the center of a non-zero one sided ideal of R is contained in $Z(R)$. In particular, any commutative one sided ideal of R is contained in $Z(R)$.

(ii) If R is a semi-prime ring, then the centralizer of any non-zero one sided ideal is equal to the center of R. Thus, if R has a non-zero central right ideal, then R must be commutative.

(iii) Let R be a prime ring. If a, b are elements of R such that $axb = bxa$, for all $x \in R$, and if $a \neq 0$, then $b = \lambda a$, for some λ in the extended centroid of R.

71
(iv) Let \(R \) be a prime ring, \(I \) a non-zero right ideal of \(R \), and let \(T \) be an endomorphism of \(R \). If \(T(u) = u \) for all \(u \in I \), then \(T \) is the identity map on \(R \).

(v) If \(R \) is a semi-prime ring and \(I \) is any non-zero ideal of \(R \), then \(C_R(I) \) is equal to the centralizer of \(I \) in \(R \).

Lemma 5.2.2. Let \(R \) be a semi-prime ring and \(I \) be a non-zero ideal of \(R \). If \(z \) in \(R \) centralizes the set \([I, I]\), then \(z \) centralizes \(I \).

Proof. Let \(z \) centralize \([I, I]\). Then for all \(x, y \) in \(I \), we have
\[
z[x , xy] = [x , xy]z,
\]
which can be rewritten as
\[
zx[x , y] = x[x , y]z.
\]
Hence, \([z , x][x , y] = 0\), for all \(x, y \) in \(I \). Replacing \(y \) by \(yz \), we get
\([z , x] I[z , x] = 0\) for all \(x, y \) in \(I \). Since \(I \) is an ideal, it follows that \([z , x]IR[z , x] = 0\) for all \(x, y \) in \(I \).

Proof of Theorem 5.2.3. First we suppose that
\[
xy + d(xy) = yx + d(yx),
\]
for all \(x, y \) in \(I \). (5.2.1)

This can be rewritten as
\[
[x , y] = -d([x , y]),
\]
for all \(x, y \) in \(I \). (5.2.2)

Now, for all \(x, y, z \) in \(I \), we have \([x , y]z + d([x , y]z) = z[x , y] + d(z[x , y])\), which yields \([x , y]z + d([x , y])z + [x , y]d(z) = z[x , y] + d(z)[x , y] + zd([x , y])\). and applying (5.2.2) we conclude that
\[
[x , y]d(z) = d(z)[x , y],
\]
for all \(x, y, z \) in \(I \). (5.2.3)

By Lemma 5.2.2, we see that \(d(I) \) centralizes \(I \); and it follows from (5.2.1) that \([x , y]\) is in the center of \(I \), for all \(x, y \) in \(I \). Another application of Lemma 5.2.2 shows that the ideal \(I \) is commutative.

Hence by Lemma 2.5.1 (ii), \(I \) is in the center of \(R \). In the event that \(xy - d(xy) = yx - d(yx) \) for all \(x, y \) in \(I \), it is equally easy to establish (5.2.3). Hence, \(I \) is a central ideal. \(\square \)
In the year 1994, Bell and Daif [10] studied commutativity of rings admitting a special kind of commutativity preserving map which they called strong commutativity-preserving and they defined it as follows:

Let \(S \) be a non-empty subset of \(R \). A map \(f : R \to R \) is called strong commutativity-preserving on \(S \) if \([f(x), f(y)] = [x, y] \), for all \(x, y \in S \).

In the mentioned paper authors also proved the following theorem on strong commutativity-preserving map.

Theorem 5.2.4 ([10, Theorem 1]). Let \(R \) be a semi-prime ring and let \(I \) be a non-zero right ideal in \(R \). If \(R \) admits a derivation \(d \) which is strong commutativity-preserving on \(I \), then \(I \subseteq Z(R) \).

Proof. For all \(x, y \in I \), we have \([x, xy] = [d(x), d(xy)]\), from which it follows easily that

\[
[d(x), x]d(y) + d(x)[d(x), y] = 0, \text{ for all } x, y \in I. \tag{5.2.4}
\]

Replacing \(y \) by \(yr \) gives

\[
[d(x), x](yd(r) + d(y)r) + d(x)(y[d(x), r] + [d(x), y]r) = 0,
\]

which on comparison with (5.2.4) yields

\[
[d(x), x]yd(r) + d(x)y[d(x), r] = 0, \text{ for all } x, y \in I \text{ and } r \in R. \tag{5.2.5}
\]

Let \(r = d(x) \), we see that

\[
[d(x), x]Id^2(x) = \{0\} = [d(x), x]IRd^2(x), \text{ for each } x \in I. \tag{5.2.6}
\]

Since \(R \) is semi-prime, it must contain a family \(A = \{P_\alpha : \alpha \in \Lambda\} \) of prime ideals such that \(\bigcap P_\alpha = \{0\} \). If \(P \) is a typical member of \(A \) and \(x \in I \), (5.2.6) shows that

\[
d^2(x) \in P \text{ or } [d(x), x]I \subseteq P. \tag{5.2.7}
\]

Suppose that \(d^2(x) \in P \). Then for all \(y \in I \), \([x, yd(x)] = [d(x), d(yd(x))]\).
and hence
\[[x, y]d(x) + y[x, d(x)] = y[d(x), d^2(x)] + [d(x), y]d^2(x) +
[d(x), d(y)] d(x). \]
Therefore
\[y[x, d(x)] = y[d(x), d^2(x)] + [d(x), y]d^2(x). \]
Thus \(I[x, d(x)] \subseteq P \) and \(I R [x, d(x)] \subseteq P \), so that either \(I \subseteq P \) or \([x, d(x)] \in P\). Either of these conditions implies \([x, d(x)] I \subseteq P\).

Now recalling (5.2.7), we get \([x, d(x)] I \subseteq P\), for all \(x \in I \) and \(P \in A \).

Since \(\cap P_a = \{0\} \), we have \([x, d(x)] I = \{0\}\), for all \(x \in I \). Now it follows from (5.2.5) that \(d(x)I R [d(x), r] = \{0\} \), for each \(x \in I \) and \(r \in R \). Hence for each \(P \in A \) and each \(x \in I \), \(d(x)I \subseteq P \) or \([d(x), R] \subseteq P\).

For fixed \(P \), the sets of all elements \(x \in I \) for which these two conditions hold are additive subgroups of \(I \) whose union is \(I \), therefore
\[d(I)I \subseteq P \text{ or } [d(I), R] \subseteq P. \quad (5.2.8) \]

Suppose that \(d(I)I \subseteq P \). For arbitrary \(x, y, z \in I \), the condition
\[[x, yz] = [d(x), d(yz)] \]
reduces to \([d(x), y]d(z) = -d(y)[d(x), z]\); and since the right side of the latter equation is in \(P \), we have \(yd(x)d(z) \in P \).

Thus \(I[d(x), d(z)] = I[x, z] \subseteq P \), for all \(x, z \in I \); and primness of \(P \) implies that either \(I \subseteq P \) or \([x, z] \in P \), for all \(x, z \in I \). In either event \([I, I] \subseteq P \). Returning to (5.2.8), we note that the second alternative gives \([d(I), d(I)] \subseteq P \) and hence \([I, I] \subseteq P \). Now using the fact that \(\cap P_a = \{0\} \), we conclude that \(I \) is a commutative right ideal; and since \(R \) is semi-prime. Lemma 5.2.1 (i) implies that \(I \subseteq Z(R) \).

Corollary 5.2.1. If \(R \) is a semi-prime ring admitting a derivation \(d \) which is strong commutativity-preserving on \(R \), then \(R \) is commutative.

Example 5.2.1. Let \(R \) be a 3-dimensional algebra over a field of
characteristic two, with basis \{u_0, u_1, u_2\} and multiplication defined by

\[u_i u_j = \begin{cases} u_0 & \text{if } (i, j) = (1, 2) \\ 0 & \text{otherwise} \end{cases} \]

Let \(d \) be the linear transformation on \(R \) defined by \(d(u_0) = 0, \ d(u_1) = u_1 \) and \(d(u_2) = u_2 \). It is easily verified that \(d \) is a derivation which is strong commutativity-preserving on \(R \).

The derivation \(d \) is not an inner derivation. Indeed, it is easy to show that any ring \(R \) admitting an inner derivation which is strong commutativity-preserving on \(R \) must be commutative.

Example 5.2.2. Let \(R = R_1 \oplus R_2 \), where \(R_1 \) is a non-commutative prime ring with derivation \(d_1 \) and \(R_2 \) is a commutative domain. Define \(d : R \to R \) such that \(d((r_1, r_2)) = ((d_1(r_1), 0). \) Then \(R \) is a semi-prime, and \(d \) is a derivation which is strong commutativity-preserving on the ideal \(I \) consisting of elements of the form \((0, r_2)\). Thus, under the hypothesis of theorem 5.2.4, we cannot prove that \(R \) must be commutative.

Remark 5.2.1. Example 5.2.1 shows that in the hypothesis of theorem 5.2.4, \(R \) must be semi-prime.

§ 5.3

Over the last two decades, a lot has been explored about commutativity-preserving mappings. Inspired by these works, Bell and Daif [10] investigated commutativity of prime and semi-prime rings admitting derivations and endomorphisms, which are strong commutativity-preserving on its certain subsets. More recently in the year 1996, Deng and Ashraf [42] studied a more general concept than the strong commutativity-preserving mappings and they considered the situation when mappings \(F \) and \(G \) of a ring \(R \) satisfy...
\[F(x), G(y) \] = \[x, y \], for all \(x, y \) in some subset of \(R \). In fact, they obtained commutativity of \(R \), when the mapping \(G \) is assumed to be either a derivation or an endomorphism of \(R \).

Theorem 5.3.1 ([42, Theorem 1]). Let \(R \) be a semi-prime ring, and \(I \) a non-zero ideal of \(R \). If \(R \) admits a mapping \(F \) and a derivation \(d \) such that \([F(x), d(y)] = [x, y] \), for all \(x, y \in I \), then \(R \) contains a non-zero central ideal.

For developing the proof of the above theorem, we begin with the following lemma.

Lemma 5.3.1 ([13, Theorem 3]). Let \(R \) be a semi-prime ring and \(I \) be a non-zero left ideal. If \(R \) admits a derivation \(d \) such that \(d \) is non-zero on \(I \) and \([x, d(x)] \in Z(R) \), for all \(x \in I \), then \(R \) contains a non-zero central ideal.

Proof of Theorem 5.3.1. If \(d(I) = 0 \), then \(I \) is commutative and is a central ideal of \(R \). Hence onward we assume that \(d(I) \neq 0 \), for all \(x, y, z \in I \), we have \([x, yz] = [F(x), d(yz)] \). This yields that
\begin{equation}
 d(y)[F(x), z] + [F(x), y]d(z) = 0. \tag{5.3.1}
\end{equation}
Replacing \(y \) by \(ry \) in (5.3.1) for \(r \in R \), and using (5.3.1), we find that
\begin{equation}
 d(r)y[F(x), z] + [F(x), r]yd(z) = 0. \tag{5.3.2}
\end{equation}
Let \(\Omega = \{ P_\alpha | \text{ } P_\alpha \text{ is a prime ideal of } R \text{ with } \cap P_\alpha = \{0\} \} \). For a fixed \(P_\alpha \in \Omega \), by (5.3.2), we obtain \(d^2(x)RI[F(x), z] = \{0\} \subseteq P_\alpha \). Thus, either \(d^2(x) \in P_\alpha \) or \(I[F(x), z] \subseteq P_\alpha \).

For a given \(x \in I \), if \(d^2(x) \in P_\alpha \), from \([x, d(x)y] = [F(x), d(d(x)y)] \), we get \(d(x)[x, y] + [x, d(x)]y = [F(x), d^2(x)y] + \ldots \)
\[[F(x), d(x)d(y)]. \] This implies that \([x, d(x)]y = [F(x), d^2(x)y] \in P_\alpha \]

i.e. \([x, d(x)]I \subseteq P_\alpha.\) On the other hand \(l[F(x) . I] \subseteq P_\alpha\) and \(lR[F(x) , I] \subseteq P_\alpha.\) Hence, either \(I \subseteq P_\alpha\) or \([F(x), y] \subseteq P_\alpha,\) for all \(y \in I.\) Thus, we find that \([F(x) , y] \subseteq P_\alpha,\) for all \(y \in I.\) Now, replacing \(y\) by \(ry\) for all \(r \in R\) yields that \([F(x) , r]y \in P_\alpha\) i.e. \([F(x) , R]Rl \subseteq P_\alpha\) and consequently, either \([F(x) , R] \subseteq P_\alpha\) or \(l \subseteq P_\alpha.\) But, if \(l \subseteq P_\alpha,\) then obviously \([x, d(x)]I \subseteq P_\alpha.\) Also, if \([F(x), R] \subseteq P_\alpha,\) then the relation \([F(x,d(ry))] = [x,ry]\) implies that \([x,ry] \in P_\alpha\) i.e. \([x,ry] = r[x, y] + r[x, y] \in P_\alpha.\) This together with \(r[x, y] = r[F(x), d(y)] \in P_\alpha,\) gives that \([x, ry]\) is in \(P_\alpha.\) Hence again \([x, d(x)]I \subseteq P_\alpha.\)

Therefore, in both the cases, we have \([x, d(x)]I \subseteq P_\alpha.\) So \([x, d(x)]I \subseteq P_\alpha = \{0\},\) and \([x, d(x)]I[x, d(x)] = 0.\) By semi-primness of \(I,\) we obtain \([x, d(x)] = 0,\) and hence by Lemma 5.3.1., \(R\) has a non-zero central ideal.

\[\Box \]

Corollary 5.3.1. Let \(R\) be a semi-prime ring admitting a derivation \(d,\) and let \(I\) be a non-zero ideal of \(R.\) If for each \(x \in I\) there exists an integer \(n = n(x) > 1\) such that \([d^n(x), d(y)] = [x, y],\) for all \(y \in I,\) then \(R\) contains a non-zero central ideal.

Corollary 5.3.2. Let \(R\) be a semi-prime ring. If \(R\) admits mapping \(F\) and a derivation \(d\) such that \([F(x), d(y)] = [x, y]\) for all \(x, y \in R,\) then \(R\) is commutative.

Proof. Using similar arguments as used to get equation (5.3.2), we have \(d^2(x)R[F(x),y] = 0.\) Now, replace \(y\) by \(d(y),\) to get \(d^2(x)R[F(x), d(y)] = d^2(x)R[x, y] = 0.\) Thus, for any prime ideal \(P_\alpha\) of \(R,\) we
have either \(d^2(x) \in P_\alpha \) or \([x, y] \in P_\alpha\). But, since \([x, y] = [F(x), d(y)] = [F^2(x), d^2(y)]\). The case \(d^2(x) \in P_\alpha \) implies that \([x, y] \in P_\alpha\) again. Hence \([x, y] = 0\).

Bell and Daif \([10, \text{Theorem 2}]\) studied strong commutativity-preserving endomorphism and prove the following:

Theorem 5.3.2. Let \(R \) be a prime ring and \(I \) an essential right ideal of \(R \). If \(R \) admits a non-identity endomorphism \(T \) which is strong commutativity-preserving on \(I \), then \(R \) is commutative.

Proof. For all \(x, y \in I \), we have \([x, xy] = [T(x), T(xy)]\), from which it follows that \((T(x) - x)[x, y] = 0\). Replacing \(y \) by \(yr \), \(r \in R \) we get \((T(x) - x)[x, r] = \{0\} = (T(x) - x)I[R, r]\) for all \(x \in I \), \(r \in R \); thus, for \(x \in I \), either \(x \in Z(R) \) or \((T(x) - x)I = \{0\}\). The set of \(x \in I \) for which these alternatives hold are additive subgroups of \(I \). Hence either \(I \subseteq Z(R) \) or \((T(x) - x)I = \{0\}\), for all \(x \in I \). If \(I \subseteq Z(R) \), \(R \) is commutative by Lemma 5.2.1(ii). Thus, we can assume that

\[
(T(x) - x)I = \{0\}, \text{ for all } x \in I. \tag{5.3.3}
\]

Now use the fact that \([x, yx] = [T(x), T(yx)]\) that is \([x,y](T(x)-x) = 0\), for all \(x, y \in I \); and replace \(y \) by \(yw \), \(w \in I \), we obtain

\[
[x, y]I(T(x) - x) = \{0\} = [x, y]I[(T(x) - x), \text{ for all } x, y \in I. \tag{5.3.4}
\]

By Lemma 5.2.1(iv), \(T \) cannot be the identity on \(I \); and it follows easily from (5.3.4) that

\[
[x, y]I = \{0\}, \text{ for all } x, y \in I. \tag{5.3.5}
\]

Let \(V = I \cap T^{-1}(I) \), and note that \(V \) contains all commutators \([x, y]\) for all \(x, y \in I \). If \(I \) is commutative, \(R \) is commutative by Lemma 5.2.1(ii); hence we may assume that \(I \) is not commutative and \(V \neq \{0\}\).

Consider any \(b \in V/\{0\} \). By (5.3.5), we have \([bx, by]b = 0\) for all
\(x, y \in \mathbb{R}\) i.e. \(bxbxb = bxbxb\), for all \(x, y \in \mathbb{R}\). Thus for fixed \(x \in \mathbb{R}\), Lemma 5.2.1(iii) gives us an element \(\lambda = \lambda(x)\) in the extended centroid of \(\mathbb{R}\) such that \(bxb = \lambda b\). It follows that \([bxb, b] = 0 = b[xb, b]\), for all \(x \in \mathbb{R}\). Now if \(b\) is not a left zero divisor, then \(b\) centralizes the non-zero left ideal \(Rb\); hence by Lemma 5.2.1(ii), \(b\) is central and therefore regular. But by (5.3.5), \(b\) is a right zero divisor; consequently \(b\) must be left zero divisor and \(\Lambda_r(b) \neq \{0\}\). Since \(I\) is an essential right ideal, there exists \(a \in I \setminus \{0\}\) for which \(ba = 0\). The fact that \(T\) is strong commutativity-preserving on \(I\) gives \(ab = T(a)T(b)\), and by (5.3.3), we get \(ab = aT(b)\) or \(a(b-T(b)) = 0\). Since \(a\) may be replaced by \(ar\) for any \(r \in \mathbb{R}\), we conclude that \(b-T(b) = 0\). Thus, \(T\) is the identity on \(V\), contradicting Lemma 5.3.4(iv); and we have eliminated the possibility that \(I\), and hence \(\mathbb{R}\), is not commutative. \(\square\)

Note that in a prime ring, any non-zero two-sided ideal is an essential right ideal. Thus we have:

Corollary 5.3.3. Let \(\mathbb{R}\) be a prime ring and \(I\) a non-zero two-sided ideal in \(\mathbb{R}\). If \(\mathbb{R}\) admits a non-identity endomorphism which is strong commutativity-preserving on \(I\), then \(\mathbb{R}\) is commutative.

Further, in the year 1996, Deng and Ashraf [42, Theorem 2] generalized the above result as follows:

Theorem 5.3.3. Let \(\mathbb{R}\) be a prime ring with characteristic different from two, and let \(T\) be any endomorphism of \(\mathbb{R}\). Let \(I\) be a subring of \(\mathbb{R}\). If for all \(x, y \in I\), \([T(x), T(y)] - [x, y] \in Z(\mathbb{R})\), then \(T\) is strong commutativity-preserving on \(I\).

Proof. For a fixed \(x \in I\), let \(\lambda_x = [T(x), T(y)] - [x, y] \in Z(\mathbb{R})\), and let \(I_a\) be the inner derivation defined by \(I_a(x) = [a, x]\). From
Tl_x(y^2) - l_x(y^2) \in Z(R) \) and \(T l_x(y) = l_x(y) + \lambda_y \), we find that \(T(y)Tl_x(y) + Tl_x(y)T(y) - y l_x(y) - l_x(y)y \in Z(R) \), and \(2\lambda_y T(y) + (T(y) - y) l_x(y) + l_x(y)(T(y) - y) \in Z(R) \). If we substitute \(l_x(y) \) for \(y \), then \(2\lambda l_x(y)Tl_x(y) + 2\lambda l_x(y) \in Z(R) \). Combining this with \(Tl_x(y) = l_x(y) + \lambda_y \), we have \((\lambda_x + \lambda l_x)(y) l_x(y) \in Z(R) \) and hence either \(l_x(y) \in Z(R) \) or \(\lambda_x + \lambda l_x(y) = 0 \). Let \(A_x = \{ y \in l \mid \lambda_x + \lambda l_x(y) = 0 \} \) and \(B_x = \{ y \in l \mid l_x(y) \text{ is in } Z(R) \} \). Obviously \(A_x \) and \(B_x \) are additive subgroup of \(l \). Thus, either \(A_x = l \) or \(B_x = l \).

If \(B_x = l \), then \(l_x(xy) = x l_x(y) \in Z(R) \). i.e. either \(x \in Z(R) \) or \(l_x(y) = 0 \). Hence, \(l_x(y) = 0 \) for all \(y \in l \), and \(\lambda_y = 0 \).

If \(B_x \neq l \), it is easy to see that \(B_x = B_x \neq l \), then \(A_x = A_x = l \). We have,

\[
[T(x), T(y)] - [x, y] = [x, [x, y]] - T([x, [x, y]]) \quad \text{and} \\
T(-x, y) = [-x, [x, y]] - T([-x, [x, y]]), \quad \text{for all } y \in l.
\]

Thus, we get \(2([T(x), T(y)] - [x, y]) = 0 \) i.e. \(2\lambda_y = 0 \), and hence \(\lambda_y = 0 \) again. Therefore in every case we have \([T(x), T(y)] = [x, y] \), for all \(x, y \in l \).

In view of Theorem 5.3.2 the above yields the following:

Theorem 5.3.4. Let \(R \) be a prime ring with characteristic different from two, \(T \) a non-identical endomorphism of \(R \), and \(l \) be an essential right ideal of \(R \). Suppose that \([T(x), T(y)] - [x, y] \in Z(R) \), for all \(x, y \in l \). Then \(R \) is commutative.

Theorem 5.3.5 ([42. Theorem 4]). Let \(R \) be a semi-prime ring, and \(l \) a non-zero ideal of \(R \). If \(R \) admits a mapping \(F \), and an endomorphism \(T \) such that \([F(x), T(y)] = [x, y] \) for all \(x, y \in l \), then \([x, T(x)] = 0 \). Moreover, if \(T \) is non-identical on \(l \cap T^{-1}(l) \), then \(R \) contains a non-zero central ideal.
Proof. The equation \([F(x), T(y^2)] = [x, y^2]\) gives that
\((T(y) - y)I_y(x) + I_y(x) (T(y) - y) = 0\), for all \(x, y \in I\). Now replace \(x\) by \(ux\), to get
\((T(y) - y)I_y(u)x + (T(y) - y)uI_y(x) + I_y(u)x(T(y) - y) + uI_y(x) (T(y) - y) = 0\). Since, \((T(y) - y)I_y(x) = -I_y(x) (T(y) - y)\), the last equation reduce to
\(I_y(u)I_{T(y)-y}(x) - I_{T(y)-y}(u)I_y(x) = 0\), for all \(x, y, u \in I\). (5.3.3)

For any \(r \in R\), substituting \(ru\) for \(u\) in (5.3.3) and using (5.3.3), we have \(I_y(u)I_{T(y)-y}(x) - I_{T(y)-y}(r)I_y(x) = 0\). Taking \(y = x\) and \(r = T(x)\), we obtain \([x, T(x)]I_{T(x)-x} = 0\) i.e. \([x, T(x)]I[x, T(x)] = 0\), and the semiprimness of \(I\) yields that \([x, T(x)] = 0\).

Moreover, if \(T\) is not identical on \(I \cap T^{-1}(I)\), then \([x, yx] = [F(x), T(yx)]\) implies \([y, x](x-T(x)) = 0\). Replacing \(y\) by \(yu\), this gives that \([x, y]u(x-T(x)) = 0\). For a prime ideal \(P_\alpha \in \Omega(\Omega\), being same as in theorem 5.3.1), since \([x, y]\{x - T(x)\} = 0 \in P_\alpha\), and \(([x, I]IR(x-T(x)) \subseteq P_\alpha\), we get either \([x, I]I \subseteq P_\alpha\) or \(T(x) - x \in P_\alpha\).

Notice that \(\{x \in I | [x, I]I \subseteq P_\alpha\}\) and \(\{x \in I | T(x) - x \in P_\alpha\}\) are additive subgroups of \(I\), we have either \(T(x) - x \in P_\alpha\) for all \(x \in I\) or \([x, I]I \subseteq P_\alpha\), for all \(x \in I\). The later case implies that \([I, I]IR[I, I] \subseteq P_\alpha\) and \([I, I]I \subseteq P_\alpha\). In both the cases, we have \([x, y](T(z) - z) \in P_\alpha\) and \((T(z) - z)[x, y] \in P_\alpha\). and hence \([x, y](T(z) - z) = (T(z) - z)[x, y] = 0\) \(\cap P_\alpha\) for all \(x, y, z \in I\), that is, \((T(z) - z)\) centralizes \([I, I]\). Thus, by Lemma 5.2.2., \((T(z) - z)\) centralizes \(I\).

For all \(x \in W = I \cap T^{-1}(I)\), since \(T(x) - x \in I\) and \(T(x) - x\) centralizes \(I\), we have \(T(x) - x \in Z(I) \subseteq Z(R)\), and \([x, T(x)] = [x, T(x) - x] = 0\). The hypothesis \(T\) being not identical on \(W\) gives \(T(x_0) - x_0 \neq 0\) for
some $x_0 \in W$. Let $I' = I(T(x_0) - x_0)$. Then I' is an ideal of R, and $T(x_0) - x_0 \in Z(R)$ implies that $0 \neq (T(x_0) - x_0)^2 \in I'$. Thus the equation $[x(T(x_0) - x_0), y(T(x_0) - x_0)] = [x, y] (T(x_0) - x_0)^2 = 0$, for all $x, y \in I$ shows that I' is a non-zero central ideal.

\[\square\]

§ 5.4

Suppose that R is a prime ring having a non-zero right ideal I. If d is a derivation on R such that $d(x)d(y) + d(xy) = d(y)d(x) + d(yx)$, for all $x, y \in I$, we say that d is a I'-derivation and if $d(x)d(y) + d(yx) = d(y)d(x) + d(xy)$, for all $x, y \in I$, then d is a I''-derivation.

In the year 1995, Bell and Daif [9] studied the commutativity of rings admitting I' and I''-derivations and proved the following:

Theorem 5.4.1 ([9, Theorem 1]). Let R be a prime ring and let I be a non-zero right ideal in R. If R admits a non-zero I'-derivation d, then either R is commutative or $d^2(I) = d(I)d(I) = \{0\}$.

In order to prove the above Theorem we use the following known results which are given in the form of Lemmas.

Lemma 5.4.1 (i) ([13, Theorem 4]). Let R be a prime ring and I a non-zero right ideal. If R admits a non-zero derivation d such that $[x, d(x)]$ is central for all $x \in I$, then R is commutative.

(ii) ([13, Lemma 3]). Let I be a non-zero left ideal of a prime ring R. If d is a non-zero derivation of R, then d is a non-zero on I.

(iii) ([16, Lemma 2]). Let I be a subring of a ring R, and let d be a derivation of R such that $d(xy) = d(x)d(y)$ for all $x, y \in I$, then $d(x)(y-d(y)) = 0$, for all $x, y \in I$.
(iv) If R is a prime ring, the centralizer of any one-sided ideal is equal to the center of R.

Proof of (i) and (ii) can be looked in [13, Theorem 4] and [13, Lemma 3] respectively, whereas (iii) is proved in [16, Lemma 2].

Proof of Theorem 5.4.1. Since d is a I^*-derivation, we have
\[[d(x), d(y)] = [d(y), x] + [y, d(x)], \text{ for all } x, y \in I. \] (5.4.1)
Substituting xy for y, we get
\[d(x)[y, x] = [d(x), x]d(y) + d(x)[d(x), y], \text{ for all } x, y \in I. \] (5.4.2)
Replacing y by yx and using (5.4.2), we have
\[[d(x), x]yd(x) + d(x)y[d(x), x] = 0, \text{ for all } x, y \in I. \] (5.4.3)
In (5.4.2) we substitute $yd(x)$ for y, since I is right ideal, to get
\[d(x)y[d(x), x] - [d(x), x]yd(x) = 0, \text{ for all } x, y \in I. \] (5.4.4)
From (5.4.3) and (5.4.4), we obtain
\[[d(x), x]y[d(x) + d^2(x)] = 0, \text{ for all } x, y \in I. \] (5.4.5)
Thus (5.4.5) yields that
\[[d(x), x]IR(d(x) + d^2(x)) = \{0\}, \text{ for all } x, y \in I. \] (5.4.6)
But R is prime, hence for each $x \in I$, we have either $[d(x), x]I = \{0\}$ or $d(x) + d^2(x) = 0$. If $[d(x), x]I = \{0\}$, then (5.4.4) shows that $d(x)y[d(x), x] = 0$, for all $y \in I$, so that $d(x)IR[d(x), x] = \{0\}$. Therefore, either $d(x)I = \{0\}$ or $[d(x), x] = 0$.
On the other hand, suppose $d(x) + d^2(x) = 0$. In (5.4.1), put $y = yd(x)$ to get
\[y[d(x), d^2(x)] + [d(x), y]d^2(x) = d(y)[d(x), x] + y[d^2(x), x] + [y, x]d^2(x), \text{ for all } y \in I. \] (5.4.7)
But $d(x) = -d^2(x)$. Hence (5.4.7) implies
\[d(y)[d(x), x] - [y, x]d(x) + [d(x), y]d(x) = y[d(x), x], \text{ for all } y \in I. \] (5.4.8)
If in (5.4.1) we put $y = yx$, we get
Thus, from (5.4.9) and (5.4.8), we get $y[d(x), x] = 0$, for all $y \in I$, that is

$$I[d(x), x] = \{0\}. \quad (5.4.10)$$

But I is a right ideal, hence $[d(x), x] = 0$. Thus, in any event, for each $x \in I$, either $[d(x), x] = 0$ or $d(x)I = \{0\}$.

Suppose that $[d(x), x] = 0$. Then by (5.4.2), we have

$$d(x)[y, x] = d(x)[d(x), y], \quad \text{for all } y \in I. \quad (5.4.11)$$

Replacing y by yz in (5.4.11) and using (5.4.11), we get

$$d(x)y[z, x] = d(x)y[d(x), z], \quad \text{for all } y \in I, z \in R \text{ i.e. } d(x)y[z, x + d(x)] = 0 \text{ for all } y \in I, z \in R. \quad \text{Thus, } d(x)yR[z, x + d(x)] = \{0\}, \quad \text{for all } y \in I, z \in R. \quad \text{Hence we have either } d(x)I = \{0\} \text{ or } x + d(x) \in Z(R).$$

The sets of all elements x for which these conditions hold are additive subgroups of I with union equal to I. Hence either $d(I)I = \{0\}$ or $x + d(x) \in Z(R)$, for all $x \in I$. In the latter case, R is commutative by Lemma 5.4.1 (i); therefore we assume that $d(I)I = \{0\}$.

Under this assumption, the condition that $[d(x), d(yz)] = [d(yz), x] + [yz, d(x)]$ for all $x, y, z \in I$ becomes $[d(x), yd(z)] = [yd(z), x] + [yz, d(x)]$, or $y[d(x), d(z)] + [d(x), y]d(z) = y[d(z), x] + [y, x]d(z) + y[z, d(x)] + [y, d(x)]z$. Using (5.4.1) to eliminate the terms with first factor y, and noting that the last summand on the right is zero, we get

$$yd(x)d(z) = [x, y]d(z), \quad \text{for all } x, y, z \in I; \quad (5.4.12)$$

hence,

$$yd(z)d(x) = [z, y]d(x), \quad \text{for all } x, y, z \in I. \quad (5.4.13)$$
Thus (5.4.12) and (5.4.13) gives
\[y[d(x), d(z)] = [x, y]d(z) - [z, y]d(x), \]
for all \(x, y, z \in I \). Using (5.4.1), we reduce this to
\[xyd(z) - zyd(x) = 0, \text{ for all } x, y, z \in I. \]
(5.4.14)
Replacing \(x \) by \(xt \) in (5.4.14) and using (5.4.1), we obtain
\[[x, yz]d(t) = 0, \text{ for all } x, y, z, t \in I. \]
(5.4.15)
From (5.4.12), we have
\[[x, zy]d(t) = zyd(x)d(t). \]
Substituting in (5.4.15), we get
\[zyd(x)d(t) = 0, \text{ for all } x, y, z, t \in I. \]
(5.4.16)
Since \(zyR d(x)d(t) = \{0\} \) for all \(x, y, z, t \in I \) and since \(I^2 \neq \{0\} \), we conclude that \(d(x)d(t) = 0 \) for all \(x, t \in I \), which is the desired conclusion that \(d(I) d(I) = \{0\} \). In particular,
\[[d(x), d(t)] = 0, \text{ for all } x, t \in I. \]
(5.4.17)
Using (5.4.1), (5.4.17) and \(d(I)l = \{0\} \), we have
\[yd(x) = xd(y), \text{ for all } x, y \in I. \]
(5.4.18)
Replacing \(y \) by \(yr \) for arbitrary \(r \in R \), we get
\[xyd(r) = yr(d(x) - xd(y)r), \]
and substituting \(yd(x) \) for \(xd(y) \) now yields
\[xyd(r) = y[r, d(x)], \text{ for all } x, y \in I, r \in R. \]
(5.4.19)
Again substituting \(d(z) \) for \(r \), we obtain
\[xyd^2(z) = y[d(z), d(x)] \]
for all \(x, y, z \in I \), and application of (5.4.17), gives
\[xyd^2(z) = 0, \text{ for all } x, y, z \in I. \]
Since \(I^2 \neq \{0\} \), we conclude that \(d^2(I) = \{0\} \).

Similarly one can prove the following.

Theorem 5.4.2. Let \(R \) be a prime ring and \(I \) a non-zero right ideal. If \(R \) admits a non-zero \(I^* \)-derivation \(d \), then either \(T \) is commutative or \(d^2(I) = d(I)d(I) = \{0\} \).

Followings are the consequences of Theorem 5.4.1 and 5.4.2.
Corollary 5.4.1. Let R be a prime ring and I a non-zero right ideal of R. If R admits a non-zero I^*- or I^{**}-derivation d with $d^2(I) \neq \{0\}$, then R is commutative.

Corollary 5.4.2. Let R be a prime ring and I a non-zero two-sided ideal. If R admits a non-zero I^*- or I^{**}-derivation d, then R is commutative.

§ 5.5.

Long ago Herstein [51] proved that if R is a prime ring of characteristic different from two which admits a non-zero derivation such that $d(x)d(y) = d(y)d(x)$ for all $x,y \in R$, then R is commutative. In view of this result, it seems appropriate to study derivations such that $d(xy) = d(yx)$ for all x,y in some distinguished subset of R. Bell and Daif [9] investigated this problem and proved the following:

Theorem 5.5.1. Let R be a prime ring and I a non-zero two-sided ideal of R. If R admits a non-zero derivation d such that $d(xy) = d(yx)$ for all $x,y \in I$, then R is commutative.

Proof. Let $c \in I$ be a constant - i.e. an element such that $d(c) = 0$, and let z be an arbitrary element of I. The condition that $d(cz) = d(zc)$ yields $cd(z) = d(z)c$. Now for each $x,y \in I$, $[x,y]$ is a constant. Hence,

$$d(z)[x,y] = [x,y]d(z), \text{ for all } x,y,z \in I. \quad (5.5.1)$$

By Lemma 5.2.2 and Lemma 5.4.1(iv), $d(z)$ is central for all $z \in I$, hence d is a I^*-derivation and R is therefore commutative by corollary 5.4.2.

The following example justified that in the above theorem, I can not be replaced by a one-sided ideal.
Example 5.5.1. Let \(R \) be a ring of \(2 \times 2 \) matrices over a field \(F \) and let

\[
R = \left\{ \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \mid a, b \in F \right\}.
\]

Suppose \(d \) is an inner derivation given by

\[
d(x) = x \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x, \text{ for all } x \in R.
\]

It is readily verified that \(d \) is a \(\lambda \) and \(\Gamma \) -derivation. But \(R \) is not commutative.

However Bell and Daif [9, Theorem 3] further extended the above theorem as follows:

Theorem 5.5.2. Let \(R \) be a prime ring of characteristic different from two, and let \(I \) be a non-zero right ideal. If \(d \) is a derivation such that \(d(xy) = d(yx) \) for all \(x, y \in I \), then either \(R \) is commutative, or \(d(I) = \{0\} = d(I)d(I) \).

Proof. Writing \(d(xy) = d(yx) \) in the form \([x, d(y)] = [y, d(x)] \) and replacing \(x \) by \(x^2 \), we get

\[
[y, x]d(x) + d(x)[y, x] = 0, \text{ for all } x, y \in I.
\]

Recalling (5.5.1) and using the fact that characteristic of \(R \) is different from two, we have

\[
[y, x]d(x) = 0 \text{ and } d(x)[y, x] = 0, \text{ for all } x, y \in I. \tag{5.5.2}
\]

In the first of these equalities replace \(y \) by \(yw, w \in I \), we obtain

\[
[y, x]d(x) = \{0\} = [y, x]d(x), \text{ for all } x, y \in I. \text{ Since } d \neq 0, \text{ we can conclude from the usual additive - group argument that}
\]

\[
[y, x]I = \{0\}, \text{ for all } x, y \in I. \tag{5.5.3}
\]

On the other hand, the second equality of (5.5.2) yields that
\[d(x) I[y, x] = \{0\} = d(x)IR[y, x]\] for all \(x, y \in I\). Thus

\[
either x is central or d(x)I = \{0\}, for all x \in I. \quad (5.5.4)
\]

Assume that \(R\) is not commutative, then \(I\) is not central. By (5.5.3) and (5.5.4), we have \([y, x] I = \{0\}\) for all \(x, y \in I\) and \(d(I)I = \{0\}\). These conditions, together with the \(d(xy) = d(yx)\) for all \(x, y \in I\), yield that \(yd(x) = xd(y)\), for all \(x, y \in I\). But this is (5.4.18), and as in the proof of the theorem 5.4.1, we have

\[xyd^2(z) = y[d(z), d(x)], for all x, y, z \in I. \quad (5.5.5)\]

Now by applying \(d\) to the condition \(zd(x) = xd(z)\), we obtain

\[zd^2(x) + d(z)d(x) = xd^2(z)d(x)d(z).\]

Hence \(zd^2(x) + [d(z), d(x)] = xd^2(z)\) and

\[y[d(z), d(x)] = yxd^2(z) - yzd^2(x). \quad (5.5.6)\]

From (5.5.5) and (5.5.6), we obtain

\[yzd^2(x) = [y, x] d^2(z), for all x, y, z \in I. \quad (5.5.7)\]

Since \([y, x]\) is constant, applying \(d\) to (5.5.2) shows that \([y, x]d(I) = \{0\} = [y, x]d^2(I)\) for all \(x, y \in I\), and (5.5.7) yields that \(I^2d^2(I) = \{0\}\). Since \(I^2 \neq \{0\}\) and \(R\) is prime, we conclude that \(d^2(I) = \{0\}\). Finally, since char. of \(R\) is different from two and using the fact that \(d^2(xy) = 0, for all x, y \in I\) we get \(d(I)d(I) = \{0\}\). \(\square\)