List of Tables

2.1 Maximum percentage(%) increase in coverage percentage due to calibration technique 39
2.2 Maximum percentage(%) increase in coverage percentage area due to calibration technique 39
2.3 Simulation results for confidence intervals of $M/E_4/1$ to $E_4/H_4^{Pe}/1$ queueing network model without feedback for $\rho_1 = 0.2$ and $\rho_2 = 0.8$ 43
2.4 Simulation results for confidence intervals of $M/E_4/1$ to $E_4/H_4^{Pe}/1$ queueing network model without feedback for $\rho_1 = 0.8$ and $\rho_2 = 0.2$ 44
2.5 Simulation results for confidence intervals of $M/H_4^{Pe}/1$ to $H_4^{Pe}/E_4/1$ queueing network model without feedback for $\rho_1 = 0.2$ and $\rho_2 = 0.8$ 45
2.6 Simulation results for confidence intervals of $M/H_4^{Pe}/1$ to $H_4^{Pe}/E_4/1$ queueing network model without feedback for $\rho_1 = 0.8$ and $\rho_2 = 0.2$ 46
2.7 Simulation results for confidence intervals of $E_4/H_4^{Pe}/1$ to $H_4^{Pe}/M/1$ queueing network model without feedback for $\rho_1 = 0.2$ and $\rho_2 = 0.8$ 47
<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8</td>
<td>Simulation results for confidence intervals of $E_4/H_4^{Pe}/1$ to $H_4^{Pe}/M/1$ queueing network model without feedback for $\rho_1 = 0.8$ and $\rho_2 = 0.2$</td>
<td>48</td>
</tr>
<tr>
<td>2.9</td>
<td>Simulation results for confidence intervals of $E_4/H_4^{Po}/1$ to $H_4^{Po}/H_4^{Pe}/1$ queueing network model without feedback for $\rho_1 = 0.2$ and $\rho_2 = 0.8$</td>
<td>49</td>
</tr>
<tr>
<td>2.10</td>
<td>Simulation results for confidence intervals of $E_4/H_4^{Po}/1$ to $H_4^{Po}/H_4^{Pe}/1$ queueing network model without feedback for $\rho_1 = 0.8$ and $\rho_2 = 0.2$</td>
<td>50</td>
</tr>
<tr>
<td>2.11</td>
<td>Simulation results for confidence regions of $M/E_4/1$ to $E_4/H_4^{Pe}/1$ queueing network model without feedback for $\rho_1 = 0.2$ and $\rho_2 = 0.8$</td>
<td>51</td>
</tr>
<tr>
<td>2.12</td>
<td>Simulation results for confidence regions of $M/E_4/1$ to $E_4/H_4^{Pe}/1$ queueing network model without feedback for $\rho_1 = 0.8$ and $\rho_2 = 0.2$</td>
<td>51</td>
</tr>
<tr>
<td>2.13</td>
<td>Simulation results for confidence regions of $M/H_4^{Pe}/1$ to $H_4^{Pe}/E_4/1$ queueing network model without feedback for $\rho_1 = 0.2$ and $\rho_2 = 0.8$</td>
<td>52</td>
</tr>
<tr>
<td>2.14</td>
<td>Simulation results for confidence regions of $M/H_4^{Pe}/1$ to $H_4^{Pe}/E_4/1$ queueing network model without feedback for $\rho_1 = 0.8$ and $\rho_2 = 0.2$</td>
<td>52</td>
</tr>
<tr>
<td>2.15</td>
<td>Simulation results for confidence regions of $E_4/H_4^{Po}/1$ to $H_4^{Po}/M/1$ queueing network model without feedback for $\rho_1 = 0.2$ and $\rho_2 = 0.8$</td>
<td>53</td>
</tr>
<tr>
<td>2.16</td>
<td>Simulation results for confidence regions of $E_4/H_4^{Po}/1$ to $H_4^{Po}/M/1$ queueing network model without feedback for $\rho_1 = 0.8$ and $\rho_2 = 0.2$</td>
<td>53</td>
</tr>
</tbody>
</table>
2.17 Simulation results for confidence regions of $E_4/H_4^{Po}/1$ to $H_4^{Po}/E_4^{Pe}/1$ queueing network model without feedback for $\rho_1 = 0.2$ and $\rho_2 = 0.8$.. 54
2.18 Simulation results for confidence regions of $E_4/H_4^{Po}/1$ to $H_4^{Po}/E_4^{Pe}/1$ queueing network model without feedback for $\rho_1 = 0.8$ and $\rho_2 = 0.2$.. 54
2.19 Performances of the estimation approaches to traffic intensity parameters under various queueing networks models without feedback: .. 55
2.20 Performances of the estimation approaches to traffic intensity vector under various queueing networks models without feedback: .. 55

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Maximum percentage(%) increase in coverage percentage due to calibration technique</td>
</tr>
<tr>
<td>3.2</td>
<td>Maximum percentage(%) increase in coverage percentage area due to calibration technique</td>
</tr>
<tr>
<td>3.3</td>
<td>Simulation results for confidence intervals of $M/E_4/1$ to $E_4/H_4^{Pe}/1$ queueing network model with feedback for $\rho_1 = 0.2$ and $\rho_2 = 0.8$</td>
</tr>
<tr>
<td>3.4</td>
<td>Simulation results for confidence intervals of $M/E_4/1$ to $E_4/H_4^{Pe}/1$ queueing network model with feedback for $\rho_1 = 0.8$ and $\rho_2 = 0.2$</td>
</tr>
<tr>
<td>3.5</td>
<td>Simulation results for confidence intervals of $M/H_4^{Pe}/1$ to $H_4^{Pe}/E_4/1$ queueing network model with feedback for $\rho_1 = 0.2$ and $\rho_2 = 0.8$</td>
</tr>
<tr>
<td>3.6</td>
<td>Simulation results for confidence intervals of $M/H_4^{Pe}/1$ to $H_4^{Pe}/E_4/1$ queueing network model with feedback for $\rho_1 = 0.8$ and $\rho_2 = 0.2$</td>
</tr>
</tbody>
</table>
3.7 Simulation results for confidence intervals of $E_4/H_4^{Pe}/1$ to $H_4^{Pe}/M/1$ queueing network model with feedback for $\rho_1 = 0.2$ and $\rho_2 = 0.8$... 78

3.8 Simulation results for confidence intervals of $E_4/H_4^{Pe}/1$ to $H_4^{Pe}/M/1$ queueing network model with feedback for $\rho_1 = 0.8$ and $\rho_2 = 0.2$... 79

3.9 Simulation results for confidence intervals of $E_4/H_4^{Po}/1$ to $H_4^{Po}/H_4^{Pe}/1$ queueing network model with feedback for $\rho_1 = 0.2$ and $\rho_2 = 0.8$... 80

3.10 Simulation results for confidence intervals of $E_4/H_4^{Po}/1$ to $H_4^{Po}/H_4^{Pe}/1$ queueing network model with feedback for $\rho_1 = 0.8$ and $\rho_2 = 0.2$... 81

3.11 Simulation results for confidence regions of $M/E_4/1$ to $E_4/H_4^{Pe}/1$ queueing network model with feedback for $\rho_1 = 0.2$ and $\rho_2 = 0.8$... 82

3.12 Simulation results for confidence regions of $M/E_4/1$ to $E_4/H_4^{Pe}/1$ queueing network model with feedback for $\rho_1 = 0.8$ and $\rho_2 = 0.2$... 82

3.13 Simulation results for confidence regions of $M/H_4^{Pe}/1$ to $H_4^{Pe}/E_4/1$ queueing network model with feedback for $\rho_1 = 0.2$ and $\rho_2 = 0.8$... 83

3.14 Simulation results for confidence regions of $M/H_4^{Pe}/1$ to $H_4^{Pe}/E_4/1$ queueing network model with feedback for $\rho_1 = 0.8$ and $\rho_2 = 0.2$... 83

3.15 Simulation results for confidence regions of $E_4/H_4^{Pe}/1$ to $H_4^{Pe}/M/1$ queueing network model with feedback for $\rho_1 = 0.2$ and $\rho_2 = 0.8$... 84
3.16 Simulation results for confidence regions of $E_4/H_4^{P_e}/1$ to $H_4^{P_e}/M/1$ queueing network model with feedback for $\rho_1 = 0.8$ and $\rho_2 = 0.2$.. 84
3.17 Simulation results for confidence regions of $E_4/H_4^{P_o}/1$ to $H_4^{P_o}/H_4^{P_e}/1$ queueing network model with feedback for $\rho_1 = 0.2$ and $\rho_2 = 0.8$.. 85
3.18 Simulation results for confidence regions of $E_4/H_4^{P_o}/1$ to $H_4^{P_o}/H_4^{P_e}/1$ queueing network model with feedback for $\rho_1 = 0.8$ and $\rho_2 = 0.2$.. 85
3.19 Performances of the estimation approaches of traffic intensity parameters under various queueing networks models with feedback: .. 86
3.20 Performances of the estimation approaches to traffic intensity vector under various queueing networks models with feedback: .. 86
4.1 Simulation analysis of queueing network model without feedback for consistency of $\hat{r}_i, i = 1, 2$ for $r_1 < r_2$ 95
4.2 Simulation analysis of queueing network model without feedback for consistency of $\hat{r}_i, i = 1, 2$ for $r_1 > r_2$ 96
4.3 Maximum percentage(%) increase in coverage percentage due to calibration technique .. 97
4.4 The chances of coverage percentage inside the 99% confidence range for queueing network model without feedback 97
4.5 Simulation results of $E_4/H_4^{P_e}/1$ to $H_4^{P_e}/H_4^{P_o}/1$ queueing network model without feedback for $r_1 < r_2$ 101
4.6 Simulation results of $E_4/H_4^{P_o}/1$ to $H_4^{P_o}/H_4^{P_e}/1$ queueing network model without feedback for $r_1 < r_2$ 102
4.7 Simulation results of $H_4^{P_e}/H_4^{P_o}/1$ to $H_4^{P_o}/E_4/1$ queueing network model without feedback for $r_1 < r_2$ 103
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.8</td>
<td>Simulation results of $E_4/H_4^{Pe}/1$ to $H_4^{Pe}/H_4^{Po}/1$ queueing network model without feedback for $r_1 \geq r_2$</td>
<td>104</td>
</tr>
<tr>
<td>4.9</td>
<td>Simulation results of $E_4/H_4^{Po}/1$ to $H_4^{Po}/H_4^{Pe}/1$ queueing network model without feedback for $r_1 \geq r_2$</td>
<td>105</td>
</tr>
<tr>
<td>4.10</td>
<td>Simulation results of $H_4^{Pe}/H_4^{Po}/1$ to $H_4^{Po}/E_4/1$ queueing network model without feedback for $r_1 \geq r_2$</td>
<td>106</td>
</tr>
<tr>
<td>4.11</td>
<td>Performances of the estimation approaches with greatest relative coverage to mean response time under various queueing network model without feedback</td>
<td>107</td>
</tr>
<tr>
<td>4.12</td>
<td>Performances of the estimation approaches with shortest relative average length to mean response time under various queueing network model without feedback</td>
<td>107</td>
</tr>
<tr>
<td>5.1</td>
<td>Simulation analysis of queueing network model with feedback for consistency of $\hat{r}_i^F, i = 1, 2$ for $r_1^F < r_2^F$ and $(p_0 = 0.2, p_1 = 0.8)$</td>
<td>116</td>
</tr>
<tr>
<td>5.2</td>
<td>Simulation analysis of queueing network model with feedback for consistency of $\hat{r}_i^F, i = 1, 2$ for $r_1^F \geq r_2^F$ and $(p_0 = 0.8, p_1 = 0.2)$</td>
<td>116</td>
</tr>
<tr>
<td>5.3</td>
<td>Maximum percentage(%) increase in coverage percentage due to calibration technique</td>
<td>117</td>
</tr>
<tr>
<td>5.4</td>
<td>The chances of coverage percentage inside the 99% confidence range for queueing network model with feedback</td>
<td>118</td>
</tr>
<tr>
<td>5.5</td>
<td>Simulation results of $E_4/H_4^{Pe}/1$ to $H_4^{Pe}/H_4^{Po}/1$ queueing network model with feedback for $r_1^F < r_2^F$ and $(p_0 = 0.2, p_1 = 0.8)$</td>
<td>122</td>
</tr>
<tr>
<td>5.6</td>
<td>Simulation results of $E_4/H_4^{Po}/1$ to $H_4^{Po}/H_4^{Pe}/1$ queueing network model with feedback for $r_1^F < r_2^F$ and $(p_0 = 0.2, p_1 = 0.8)$</td>
<td>123</td>
</tr>
<tr>
<td>5.7</td>
<td>Simulation results of $H_4^{Pe}/H_4^{Po}/1$ to $H_4^{Po}/E_4/1$ queueing network model with feedback for $r_1^F < r_2^F$ and $(p_0 = 0.2, p_1 = 0.8)$</td>
<td>124</td>
</tr>
</tbody>
</table>
5.8 Simulation results of $E_4/H_4^{Pe}/1$ to $H_4^{Pe}/H_4^{Po}/1$ queueing network model with feedback for $r_1^F > r_2^F$ and $(p_0 = 0.8, p_1 = 0.2)$ 125

5.9 Simulation results of $E_4/H_4^{Po}/1$ to $H_4^{Po}/H_4^{Pe}/1$ queueing network model with feedback for $r_1^F > r_2^F$ and $(p_0 = 0.8, p_1 = 0.2)$ 126

5.10 Simulation results of $H_4^{Pe}/H_4^{Po}/1$ to $H_4^{Po}/E_4/1$ queueing network model with feedback for $r_1^F > r_2^F$ and $(p_0 = 0.8, p_1 = 0.2)$ 127

5.11 Performances of the estimation approaches with greatest relative coverage of mean response time under various network model with feedback: .. 128

5.12 Performances of the estimation approaches with shortest relative average length of mean response time under various network model with feedback: .. 128

6.1 Simulation analysis of queueing network model without feedback for consistency of $\hat{r}_i, i = 1, 2$ for $r_1 < r_2$ 138

6.2 Simulation analysis of queueing network model without feedback for consistency of $\hat{r}_i, i = 1, 2$ for $r_1 > r_2$ 138

6.3 Maximum percentage(%) increase in coverage percentage due to calibration technique ... 139

6.4 The chances of coverage percentage inside the 99% confidence range for queueing network model without feedback 140

6.5 Simulation results of $M/E_4/1$ to $E_4/H_4^{Pe}/1$ queueing network model without feedback for $r_1 < r_2$ 143

6.6 Simulation results of $M/H_4^{Pe}/1$ to $H_4^{Pe}/H_4^{Po}/1$ queueing network model without feedback for $r_1 < r_2$ 144

6.7 Simulation results of $M/H_4^{Po}/1$ to $H_4^{Po}/E_4/1$ queueing network model without feedback for $r_1 < r_2$ 145

6.8 Simulation results of $M/E_4/1$ to $E_4/H_4^{Pe}/1$ queueing network model without feedback for $r_1 \geq r_2$ 146
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9</td>
<td>Simulation results of $M/H_4^{Pe}/1$ to $H_4^{Pe}/H_4^{Po}/1$ queueing network model without feedback for $r_1 \geq r_2$</td>
<td>147</td>
</tr>
<tr>
<td>6.10</td>
<td>Simulation results of $M/H_4^{Po}/1$ to $H_4^{Po}/E_4/1$ queueing network model without feedback for $r_1 \geq r_2$</td>
<td>148</td>
</tr>
<tr>
<td>6.11</td>
<td>Performances of the estimation approaches with greatest relative coverage to mean response time under various queueing network model without feedback</td>
<td>149</td>
</tr>
<tr>
<td>6.12</td>
<td>Performances of the estimation approaches with shortest relative average length to mean response time under various queueing network model without feedback</td>
<td>149</td>
</tr>
<tr>
<td>7.1</td>
<td>Simulation analysis of queueing network model with feedback for consistency of $\hat{r}_i^{F}, i = 1, 2$ for $r_1^{F} < r_2^{F}$ and $(p_0 = 0.2, p_1 = 0.8)$</td>
<td>159</td>
</tr>
<tr>
<td>7.2</td>
<td>Simulation analysis of queueing network model with feedback for consistency of $\hat{r}_i^{F}, i = 1, 2$ for $r_1^{F} > r_2^{F}$ and $(p_0 = 0.8, p_1 = 0.2)$</td>
<td>159</td>
</tr>
<tr>
<td>7.3</td>
<td>Maximum percentage(%) increase in coverage percentage due to calibration technique</td>
<td>160</td>
</tr>
<tr>
<td>7.4</td>
<td>The chances of coverage percentage inside the 99% confidence range for queueing network model with feedback</td>
<td>161</td>
</tr>
<tr>
<td>7.5</td>
<td>Simulation results of $M/E_4/1$ to $E_4/H_4^{Pe}/1$ queueing network model with feedback for $r_1^{F} < r_2^{F}$ and $(p_0 = 0.2, p_1 = 0.8)$</td>
<td>164</td>
</tr>
<tr>
<td>7.6</td>
<td>Simulation results of $M/H_4^{Pe}/1$ to $H_4^{Pe}/H_4^{Po}/1$ queueing network model with feedback for $r_1^{F} < r_2^{F}$ and $(p_0 = 0.2, p_1 = 0.8)$</td>
<td>165</td>
</tr>
<tr>
<td>7.7</td>
<td>Simulation results of $M/H_4^{Po}/1$ to $H_4^{Po}/E_4/1$ queueing network model with feedback for $r_1^{F} < r_2^{F}$ and $(p_0 = 0.2, p_1 = 0.8)$</td>
<td>166</td>
</tr>
<tr>
<td>7.8</td>
<td>Simulation results of $M/E_4/1$ to $E_4/H_4^{Pe}/1$ queueing network model with feedback for $r_1^{F} \geq r_2^{F}$ and $(p_0 = 0.8, p_1 = 0.2)$</td>
<td>167</td>
</tr>
</tbody>
</table>
7.9 Simulation results of $M/H_4^{Pe}/1$ to $H_4^{Pe}/H_4^{Po}/1$ queueing network model with feedback for $r_1^F \geq r_2^F$ and $(p_0 = 0.8, p_1 = 0.2)$ 168

7.10 Simulation results of $M/H_4^{Po}/1$ to $H_4^{Po}/E_4/1$ queueing network model with feedback for $r_1^F \geq r_2^F$ and $(p_0 = 0.8, p_1 = 0.2)$. . 169

7.11 Performances of the estimation approaches with greatest relative coverage to mean response time under various network model with feedback: . 170

7.12 Performances of the estimation approaches with shortest relative average length to mean response time under various network model with feedback: . 170