CONCLUSION
CONCLUSION

The present study was carried out on 28 normal healthy young medical students of M.L.B. Medical College, Jhansi in order to see the effect of yogic exercises on Cardio-respiratory system, Haemopoietic system and metabolic functions of the body. The age of volunteers ranged from 18-23 years. The yogic training was given for three months and the volunteers were subjected to practice 10 asanas, 5 mudras, 5 pranayams and 5 bandhas regularly for one and half hour daily in the evening.

Yogic practices are known to increase vagal tone and decrease sympathetic tone; thus they induce decrease in systolic and diastolic blood pressure and in heart rate as well. In confirmation with this explanation in the present study it was seen that there was a statistically significant fall in systolic blood pressure after first month, second month and third month; but the fall in diastolic blood pressure was significant only after third month. Similarly there was statistically significant fall in heart rate after first, second and third months of yogic exercises.

There was a significant decrease in respiratory rate, increase in chest expansion, breath holding time.
40 m.m. test after first, second and third month of yogic practices. Although the tidal volume decreased after first month of yogic exercises but there was statistically significant rise in the tidal volume at the end of third month of yogic practices. There was an increase in inspiratory reserve volume, inspiratory capacity, expiratory reserve volume, expiratory capacity and vital capacity after first, second and third month of yogic exercises. Similarly F E V₁ and maximum breathing capacity showed a definite statistically significant increase after first, second and third month of yogic practices. Pranayamic exercises are known to reduce the viscous resistances of lungs thereby increasing the volume and capacities of lungs.

On observing the effects of yoga practice on haemopietic system, it was seen that there was a decrease in erythrocyte sedimentation rate, increase in haemoglobin gm. percent, total red blood cell count and platelets count. There was no significant change in packed cell volume. The total leucocyte count increased and this increase was statistically significant after first, second and third month of yogic exercises. It has been seen that all the formed elements of blood increased after yogic practices. It may be argued that yoga somehow stimulates the bone
marrow resulting in an increase in all the cellular components of blood. There was no definite change in differential leucocyte count except that there was an increase in lymphocyte count at the end of third month of yogic exercises.

In present study there was statistically significant increase of weight at the end of second and third months. Higher concentrations of testosterone have been reported in persons practising yogic exercises and probably this increase in testosterone caused increased anabolism resulting in an increase in weight. There was a statistically significant decrease in basal metabolic rate and oxygen consumption when recorded for similar periods. This decrease in basal oxygen consumption is postulated to be because of decrease in peripheral resistance produced by yogic practices, resulting in lowering of blood pressure and possibly increased muscle relaxation along with a decrease in sympathetic tone produced a decreased oxygen demand in basal conditions.

On observing the effects of yogic exercises on metabolic functions, a consistent and definite decrease in blood urea, blood sugar and serum cholesterol was noted in first, second and third months. It has been postulated that increased conversion of cholesterol to corticosteroids results in decreased cholesterol, probably.