REVIEW OF LITERATURE
According to Yoga Sutras of Patanjali, Yoga restrains the consciousness from responding to different form of stimuli. Yoga system advocates the cleaning and purifying the inlets and outlets of the body through six types of exercises (Shatkarama), i.e. neti (cleansing the nasal passages), dhauti (cleansing stomach), vasti (cleansing the rectum and colon), tratake (cleansing the eyes by fixing the gaze on some object without blinking and keeping it fixed until the lachrymal secretion starts flowing freely), kapalbhati (cleansing the nasopharynx and nasal air passage) and vajroli (cleansing the urinary passage), gajkarni, bagi and shankhaprakshalana etc. are other cleansing practises advocated by different authors. After cleansing the body impurities, yoga advocates the performance of physical, moral and psychological practises through yama (abstention), niyama (observance), asana (physical postures), pranayama (breath control), pratyahara (control of sensory perception), dhyana (fixed attention), dharma (contemplation) and samadhi (absolute concentration). Researches have been conducted on almost all these aspects of yoga through out the world.

Vakil (1950) reported that after 56 hours of confinement in a air tight box a yogi lost his consciousness.
but on examination he found that even after a long period of hypoxic state the vital functions were not markedly changed. The blood pressure was maintained at 112/70 mm of Hg with heart rate of 80 per minute and respiration 8-10 per minute. Subsequently Satya Narayan Murthi (1958) conducted study on Shri Rama Nand Yogi who claimed to stop his arterial pulses. In a Yogic demonstration it was found that his respiratory rate and heart sounds were not audible, arterial blood pressure was not recordable and plantar reflexes were bilaterally flexor without any change in blood sugar, blood urea and plasma electrolyte levels. Although Cardiac sounds were not audible, yet the electrical activity of the heart was not affected in electrocardiographic analysis.

Anand and Chhina (1960) during a yogic demonstration on those who claimed to stop their heart rate voluntarily observed slowing of heart rate, increase in arterial blood pressure, suppression of alpha activity of the brain on electroencephalogram record and decrease in transverse diameter of heart. Further a detailed study was conducted by Anand et al (1961) on Shri Rama Nand Yogi on whom previously Satya Narayan Murthi had conducted studies in 1958 to see the effect of his yogic miracles while confined in an air tight box. Inspite of decrease in oxygen content and increase in carbon dioxide in air
tight box the yogi did not show tachycardia or tachypnea which normally occurs under hypoxic conditions. It was found that the yogi could reduce his oxygen consumption with slowing of heart rate during the confinement. Electroencephalographic records showed changes from alpha rhythm to low voltage fast activity.

From these studies it seems that yogis with the help of their yogic practices could modify the autonomic control of their body including heart. Slowing of heart is a consistent finding in most of the yogic demonstrations. Wenger and Bagchx (1961) investigated four yogis and concluded that yogic exercises could increase the vagal tone of unknown origin. The electroencephalographic effects were variable in contrast to previous findings. Anand et al. (1961) observed persistent alpha activity which could not be blocked by sensory stimuli. Rao (1962) estimated the metabolic cost in head-stand posture in six male medical students. Metabolic cost as estimated by the closed circuit method was 68.6% more in recumbent and 48% more than standing posture. Rao (1963) also studied the cardiovascular responses in erect and head-stand position in healthy male medical students in the age group of 19 to 23 years. He observed that the mean pressure in the posterior tibial artery was increased in erect posture by 98 mm of Hg and heart rate by 17 beats per minute. A slight fall in the mean brachial
arterial pressure was also invariably noted. A change from erect to head stand posture had the reverse effect. The heart rate was now reduced by 15 beats per minute. The mean brachial artery pressure rose by 15 mm Hg, the posterior tibial systolic pressure fell steeply by 19 mm Hg while the posterior tibial diastolic pressure in all the subject was unrecordable. Digital blood flow also showed a tendency to alter with the various postures.

In 1964 Miles observed on an Indian who practised three yogic type of breathing patterns, an oxygen consumption of plus 8% to 32% in Ujjayi + 10% to 14% in Kapalbhati + 17% to + 20% in Bhasrika. Vahia (1966) studied the effect of Yogasana, pranayama, dharana and dhyana on psychiatric patients suffering from schizophrenia. They showed an improvement. Ram Murthi (1967) suggested a methodology of yoga which helped to attain concentration and control of mind.

Rao et al (1968) studied the role of low altitude and high altitude on oxygen consumption during yoga type of breathing and he found that oxygen consumption increased at both altitudes. Chhina et al (1968) investigated eight meditative and one hatha yogi and observed well modulated alpha activity in one of these yogis without being blocked by any sensory stimuli. In 5 yogis they observed marked alpha activity which could not be blocked by external sensory stimuli and one yogi
showed low voltage fast activity. In most of the yogis
decrease in respiration, heart rate and blood pressure
were observed.

Karambelkar (1969) studied the effects of 20
yogic asans in 15 male and 5 female students attending
the three week training. He observed that uropepsinogen
was significantly reduced in 13 male subjects. In
female no significant changes were observed. Datey
(1969) studied 47 patients of essential hypertension
who practised 'Shavasana' and observed an improvement in
52% of the hypertensive cases.

Wallace (1970) studied the effects of transcendental
meditation on 15 normal young students whose practice of
technique had ranged from 6 months to 3 years and observed
decrease in oxygen consumption and heart rate during
meditation along with increased skin resistance. The
electroencephalographic record showed increased amplitudes of alpha waves, occasionally changed to a slower
alpha wave frequency and in some cases stopped for 2 to
5 minutes and low voltage theta wave predominated.

Bhole (1970) studied two groups of 24 each. One acted as
control other practising yogic exercises for period of
3 weeks. He observed that the vital capacity increased
in test group: from 3.095 litres to 3.132 litres.

In 1971 Wallace et al reported a marked mental and
physical relaxation following meditation in 8 subjects.
Oxygen consumption decreased by 20% without changing respiratory quotient and the electroencephalogram showed increased alpha and theta wave activity. The blood lactate decreased and skeletal muscle blood flow increased. Lal et al (1971) studied the effect of pranayama on 10 novices who had registered for 3 month course of Raj yoga and observed decreased heart rate and respiratory rate. Wallace (1971) also noted hypometabolic physiological change other than those occurring during sleep and hibernation in 36 subjects. During meditation oxygen consumption decreased along with decrease in carbon dioxide elimination. The arterial pH and blood lactate decreased slightly. The skin resistance increased but the diastolic and mean arterial pressure remained unchanged. The electroencephalogram showed increase in intensity of slow alpha wave and occasional theta wave activity.

Udupa et al (1974) observed in 12 young normal male volunteers undergoing a course of yogic practices for a period of six months, besides a reduction in body weight, a significant improvement in the pattern of respiratory functions viz. lowered respiratory rate, increased chest expansion, increased vital capacity and breath holding time. The metabolic assessment showed enhanced adrenocortical activity, reduction in serum cholesterol, reduction in fasting blood sugar and
restoration of serum protein levels.

Udupa et al. (1972) conducted physical, endocrine metabolic and neuropsychological study in a group of 12 young normal male volunteers undergoing a six months course of hath yoga and observed reduction in body weight, respiratory rate with increased chest expansion, vital capacity and breath holding time. An endocrine and metabolic assessment showed enhanced adrenocortical activity, reduction in serum cholesterol level, reduction in blood sugar level and increased serum proteins along with significant increase in urinary excretion of testosterone. A neurohormonal and psychological study showed lowered neurohumoral activity, decreased neuroticism, lowered rate of mental fatigability, increased performance quotient and improved memory quotient. Electroencephalographic study showed prominent alpha waves with fewer spikes indicating a less irritable nervous system.

In 1973 Gopal et al. studied the effects of Pranayam on blood pressure, pulse rate and some respiratory functions on 14 trained and 14 untrained persons be observed that in trained persons the vital capacity and tidal volume increased with decrease in respiratory rate, pulse rate and diastolic blood pressure. Udupa et al. (1973) subjected a group of normal male volunteers undergoing a six months course of yoga practices and
observed decreased neuroticism index, lowered mental
fatiguability index, increased performance quotient
improved memory quotient and psychological stability.

Kothari et al (1973) reported various physiological
observations after 8 days of confinement in an air tight
pit by a yogi who claimed to have attained samadhi.
They found that soon after the yogi entered into the
pit the heart rate was increased to 250 per minute
without any sign of ischaemia. Suddenly after 29 hours the
electrical activity of the heart stopped and returned
to normal after about a week of confinement. After
coming out of the confinement of the 8th day it was
found that his body weight, blood pressure, pulse rate,
respiratory rate, body temperature and blood sugar were
decreased. There was an increase in oral temperature,
erthrocyte sedimentation rate, packed cell volume and
total leucocyte count. Bhatnagar et al (1973) studied the
lung volumes and capacities in 260 subjects of either
sexes belonging to different age groups and observed
that all the lung volumes and capacities were much lower
in female than male except percentage value of F.E.V. where
no significant difference was noted.

In 1974, Mookherjee found lowering of heart rate,
respiratory rate, blood cholesterol level, blood sugar
level and rising of lymphocyte count of subjects pract-
is ing yoga. Lebo et al (1974) found prolongation of
inspiration time and lowering of respiratory rate and heart rate following 6 weeks of intensive hatha-yoga practise; Bhatnagar et al (1974) found improved thermo-regulatory adjustment, increased oxygen consumption with decrease in ambient temperature, observations in conformity with those of Green on Swami Rama and Wallace (1974) has described the effects of transcendental meditation. As per his observations oxygen consumption and metabolic rate markedly decreased (indicating a state of deep rest) but the partial pressure of oxygen and carbon dioxide in the blood remained essentially constant. Thus the decrease in total oxygen consumption was not caused by a manipulation in breathing pattern or forced deprivation of oxygen, but is a natural physiological change due to lowered requirement for oxygen by the cells during this effortless process; breath rate decreased significantly indicating a more relaxed and rested state of the nervous system.

He further observed that cardiac output markedly decreased indicating a reduction in the work load of the heart; concentration of blood Lactate markedly decreased; skin resistance increased indicating deep relaxation, reduction of anxiety and emotional disturbances; EEG showed a state of alertness along with a restfulness indicating that while the body is in a state of deep rest, the mind is in a state of inner
wakefulness and alertness; there was an increase in the growth rate of intelligence, increased improvement in recall ability, improved academic performance, more job satisfaction, more stability in their jobs, greater increase in job performance, more rewarding and productive interpersonal relationship in business and co-workers, there was more developed personality increased inner control and decreased anxiety improved psychology, normality, mental health, psychological health, self actualization and decreased blood pressure, reduced use of alcohol and cigarettes, faster recovery from sleep deprivation, a state of integration of emotions and thinking amongst prisoners, reduced use of non-prescribed drugs, improved ability to focus attention, improved resistance to disease by strengthening immune system and regenerative capacity of gums and cessation of allergies, relief from insomnia, improved strength, orderliness of brain functioning, thinking, athletic performance, neuromuscular integration, agility, cardiovascular efficiency, vital capacity and normalization of weight.

Tebecis (1974) has observed that through transcendental meditation there was lowered beta density, decreased REM, lessened ocular motility, increased skin resistance and decreased forehead skin temperature. Abravanel (1974) observed an increased mental alertness, autonomic
stability and coherence of physical and mental functions during TM, thus consistently implicating the hypothalamus; Domash (1974) has described macroscopic quantum model of TM and according to him, the physiology of TM is seen as a purified, expanded, isolated version of the characteristic physical property of life in general; Udupa et al (1974) described effects of asana, pranayama and meditation. After 6 months of asanas, they found significant increase in vital capacity, increase in breath holding time, decrease in the rate of respiration and heart beat, notable reduction in body weight, blood sugar and serum cholesterol, their rate of urinary excretion of corticosteroids and testosterone increased and there was improved alpha pattern in EEG; the volunteers practising pranayam showed significant improvement in respiratory functions, improved adrenocortical functions and other allied biochemical changes; those practising meditation showed significant reduction in plasma cortisol, urinary corticoids and urinary nitrogen excretion and there was a significant increase in the blood level of different neurohumors and the related enzymes.

Bhatnagar et al (1974) found lesser heart rate, respiratory rate and increased tidal volume and peripheral blood flow in volunteers trained in hatha-yoga discipline; there was a reduction in weight and
subcutaneous fat and an increase in chest circumference; there was an increase in inspiratory reserve volume but vital capacity, MVV pulmonary reserve, percent pulmonary reserve PEVI and chest circumference increased progressively to a considerable extent; blood flow through muscles and skin showed a fall and then a secondary rise, a better thermoregulatory adjustment, improved relation of impulse in the motor nerve of persons trained in hatha yoga were other observations; Dhanraj et al (1974) found a significant increase in BMR and thyroxine content and there was some improvement in oxygen consumption with moderate increase in hemoglobin, hematocrit and red blood cell count.

Bhole (1974) described pressure changes during different phases of pranayamic breathing; he further described pressure changes in oesophagus, stomach, bladder and colon and found that negative pressures developed in both uddiyana and nauli, there was greater speed of water suction in bladder during vauli. Charote (1974) described significant achievement in the physical fitness following a short-term yogic training in forty border students; Gitanands (1974) described a remarkable reduction of active spermatozoa immediately after the practice of six special mudras called CLI MUDRAS, thus offering a yogic method of family planning; Riga (1974) believed that yoga will become the basis for physical and moral
self-improvement of contemporary and future humanity and Yadav (1974) pleaded for right type of research on yoga. Gode et al (1974) also found increased urinary excretion of testosterone similar to observations of Udupa and other observations on Hatha Yoga were those of Neuhausser et al (1974).

In 1975, Patel found out statistically significant reduction in blood pressure following psychophysical relaxation exercises for 13 months; Nayar (1975) found highly significant increase in breath holding time from 54 to 106 seconds and vital capacity from 1.98 to 2.189 L/M² body surface area and forced expiratory volume (from 1.69 to 1.94 litres/M² body surface area) and a significant decrease in pulse rate during combined operation of routine National Defence Academy and Yogic exercises; Udupa et al (1975) studied the effects of Shirshasana and Garvansana (15 to 18 minutes daily) Bhujangasana and Matsyasana (3 to 4 minutes) and Halasana and Paschimottana (5 to 6 minutes) for a period of 6 months and found a considerable improvement in cardiorespiratory functions, adrenocortical functions and a number of metabolic corrections in addition to a remarkable psychological and neurophysiological improvements. It has been postulated that these changes might be due to the specific rehabilitative effects of the Yogic practices on different vital organs.
improving their microcirculation and thus improving their functions.

Suryanamaskara, on the other hand, influences the skeletal muscles only without any increase in serum PBI and plasma cortisol which could indicate improved thyroid and adrenocortical functions. Sarvangasana group showed maximum increase in serum PBI which suggest that this particular asana rehabilitates the thyroid gland. The Suryanamaskara appears to induce mainly a stressful state as is evident from the increased levels of neurohumors and related enzymes in contrast to yogic practices which appear to exert neurophysiological stability as is evident from lowered level of cholinesterase and catecholamines.

Salgar et al (1975) had suggested application of padmasana in conditions of low cardio-respiratory reserves; Udupa et al (1975) had found pranayama a comprehensive respiratory exercise capable of inducing a number of systemic effects besides causing improvement of respiratory functions; Udupa et al (1975) have found out that sarvangasana induced prominent (1975) physiological effects specially in cardio-respiratory system with least amount of physical changes produced some improvement of endocrine and metabolic effects. Shirsasana and Halasana on the other hand produced more of physical effects and lesser amount of physiological
changes; Udupa et al (1975) had further found some significant biochemical changes following a 10-day course of meditation. The blood neurohumors and the related enzymes, namely RBC cholinesterase, plasma catecholamines and plasma histaminase were found decreased. This indicated that after the course of meditation, these subjects were physically stable and were under less stressful state while they were mentally more active and were in a state of increased awareness. Deutsch (1975), Schuster (1975) and Wilson (1975) had tried to elaborate the role of transcendental meditation in relief of bronchial asthma.

In 1976, Bhatnagar et al had studied the effects of Ardha and poorna navasana, poorna shalabhasana, chakrasana and gomukhasana and found an increase in blood flow (wrist and finger) and a significant decrease in the activity of the muscles during the performance of an individual asana particularly in the later months of training; Bhatnagar et al further studied the effects of pranayama like kapalbhati with and without bandhas, bhasrika with and without bandhas and sahaj pranayam and found an increase in blood flow (wrist and finger) and depth of respiration as the training progressed; Balogh (1976) had suggested the use of yoga for the west; Belaia et al (1976) had described certain beneficial effects of few asanas on the central nervous and
cardiovascular system; Gharote (1976) had described the effects of yogic exercises on failures on the krausweber tests and Wigley (1976) had described yoga as a therapy for community psychiatric nursing.

In 1977 Suresh et al conducted a comparative study of pulmonary function tests in bronchial asthma with normal cases and observed that FEV_1 was a reliable index for assessing the therapeutic efficiency of pranayamic exercises. Agarwal et al (1977) observed that more than 25% of medical students under study were hyperreactor to cold pressure test. Hyperreacters were selected for further study and divided into two groups. In the group I, practising shavasana for a period of 3 months a significant lowering of pressure response both systolic and diastolic to cold pressure test was observed. Mental stress always raised blood pressure but stress in persons practising shavasana raised blood pressure to a lesser extent, similarly rise in serum cholesterol level due to mental stress was also raised to lesser extent than the control group. Misra et al (1977) studied the effects of 10 yogic posture on 20 female medical students and observed that there was a significant lowering of heart rate, blood pressure, blood cholesterol level and an increase in lymphocyte count and score in Harward step test.
Karambelkar et al (1977) studied the short term yogic training on serum cholesterol level in 32 subjects of either sexes for a period of 3 weeks and observed reduction in serum cholesterol level in male subjects. This change was highly significant with subjects having high initial cholesterol level, while there was no significant change in case of subjects with normal initial level. In the case of female the results in every respect showed similar trend, though it was not statistically significant. Bhole et al (1977) studied the effect of yogic treatment on breath holding time in Asthmatics and observed that the pranayama and some of the internal cleansing process like Kalpalbhati and Neti increase the breath holding time of Asthmatic patients after one month yogic treatment.

In 1978 Bhatnagar et al studied the effects of yoga training on thermoregulation in 20 subjects and took observations after first, third and sixth months. They found that mean skin temperature (TS) followed the changes in the ambient temperature (Ta) but the core temperature increased very little even during exercise, and this increase was almost negligible after about 3 months of training, suggesting an improved thermoregulatory adjustment. The oxygen consumption increased with decrease in Ta. In some subjects there was a relative decrease in sweat loss inspite of an increased humidity. The increase
in blood flow through muscles and skin as a result of exercise showed a similar pattern as observed by workers. However, in about three months of training, this increase had lessened with a concomittant increase in the extraction of oxygen, showing thereby an increased adaptation by yoga training.

Chhina et al (1979) studied the effects of two types of pranayams, one with a faster rate of breathing (Kapalbhati) (for 3 to 5 minutes) and the other with a slower rate of breathing (ujjayi 15 minutes) in ten subjects and studied their effects on EEG and cardiorespiratory functions. Most of the subjects showed alpha activity in their resting EEG records which increased further in amplitude and percentage time by both the pranayamic exercises. The effect persisted for 3 to 8 minutes even after the termination of the pranayam. The subjects claimed to acquire better concentration and mental activity and greater alertness after the pranayamic practices. The effect seemed to be similar to that of meditation and mights have similar underlying mechanisms.

Lakshmikanthan et al (1972) studying the effects of yoga on heart concluded that shavasana and ramanjini were likely to be useful for the treatment of high blood pressure, rehabilitating a patient after heart attack because in addition to giving rest to heart, it
improved the cardiac performance. In viparitkarni sarvangasana and halasana, the work of the heart was increased. In yoga experts and healthy volunteers, the work of the heart was increased and the cardiac performance was improved. Similarly these asanas might be helpful in the primary prevention of ischaemic heart disease. In cardiac patients with subnormal cardiac functions, viparitkarni and sarvangasana increased the work of heart with decreased cardiac performance.

Maini et al (1978) studied the effect of combination of yoga pranayam in 40 medical students and pranayam alone in another group of 40 students and found a decrease of fasting plasma glucose concentration by 8% from control. The postprandial changes in plasma glucose with 100 gm load showed a 9% lesser increase than pre-training period. Serum cholesterol decreased by 9-10% in all cases practicing combined training and only in males carrying out pranayams alone. Haemoglobin concentration was significantly raised in all the subjects of both groups by 6 to 10%. No significant alteration in leucocyte count appeared. The absolute eosinophil count declined remarkably (12-23%) in volunteers doing combined training whereas no change occurred in individuals carrying out pranayams alone. (Maini et al (1978) studied the effects of yogic postures on some physiological parameters and found an increase in height.)
weight and chest expansion in majority of cases. Heart rate was decreased in 50% of cases; blood pressure was decreased in 50%; increased in 20% and there was no change in 30% of cases; there was an increase in respiratory volume and capacities and improvement in cardiac and respiratory efficiency whereas changes in blood sugar and cholesterol were variable.

Meti et al (1978) studied the value of yoga therapy in the treatment of bronchial asthma in 10 male and 2 female patients in 20 to 55 age groups. The duration of the disease ranged from 1 to 14 years and the treatment period varied from 20 to 100 days. Yoga asanas and pranayamas were performed by them. Bronchodilators were given for a few days after admission and tapered off and afterwards were administered only if patient had moderate to severe attacks. Two females and one male were asymptomatic and remained so. There was good response in one, satisfactory relief in two, partial relief in three and no relief in the remaining three. Patankar et al (1978) concluded that healthy elderly men performing pranayams preserved their body in better form, remained more proportionate with better respiratory functions and stronger grip strength than control group.

In 1979, Lakshmikantham et al studied long term effects of yoga on hypertension and/or coronary artery disease in 43 males and one female. They were divided
into 3 groups, Group I consisting of 10 patients with established systemic hypertension, Group II of 17 patients with hypertension and Group III of 17 patients with coronary artery disease alone. It was observed that there was significant decrease in systolic and diastolic blood pressure in group I and II only the triple product in group II and III indicated a rise in anginal threshold and improved effort tolerance and cardiac performance.

Bhatnagar et al. (1979) studied the thermoregulation and neuromuscular excitability in yogi and noted that hathayogis were able to adjust better to the variation of cold and heat. Some of them could even consciously vary the temperature of the two parts of their body.

Chhina et al. (1979) studied the effect of pranayam and observed that in yoga controlled breathing was not only meant for changing the primary functions of lungs for ventilation but also for a gradual training of individual to concentrate on the process of breathing by providing additional help in physical and mental relaxation. Mayer et al. (1979) studied on 30 healthy subjects. The subjects were divided into two groups of 15 each. Group I was treated as control and group II practised yogic exercises one hour daily for a period of six months. He observed a gradual shift of autonomic balance towards parasympathodominance, improvement in thermoregulatory efficiency, orthostatic tolerance and lung functions.
In 1980, Tulpule et al studied in 102 male patients of myocardial infarction for a period of one year. All the patients received medical treatment whereever, necessary and indicated. Very simple yogic posture and pranayam were practiced. He observed that yogic posture did not change the basal status of patient and did not produce cardiac decompensation or precipitate angina. Effects on mortality showed that out of 102 trial patients only 3 died during one year of follow up whereas 13 out of 103 died in the control group, and symptoms were better controlled in trial group. Shrikrishna et al (1980) studied the effects of pranayama in 5 subjects trained to perform Ujjayi and Kapalbhati practice daily for 15 minutes for 3 months. He observed that Kapalbhati produced increase in heart rate, mean arterial blood pressure and of alpha index in electroencephalogram. The magnitude of increase in Ujjayi was smaller as compared to Kapalbhati. Kapalbhati produced a decrease in blood glucose level and increase in free fatty acid as well as triglyceride level.

Sachdeva et al (1980) studied the effect of yogic exercise on 20 young healthy subjects. He studied the yogic training for a period of 3 months and observed decrease in systolic and diastolic blood pressure, and increase in finger blood flow. Harvard step up test showed an improved physical efficiency. Tidal volume,
minute ventilation respiratory rate and breath-holding time did not change. The basal oxygen consumption was lowered by 20-25%. Begga et al. (1980) studied the effects of transcendental meditation and yoga practice on medical students. He observed that the respiratory rate was the first parameter to decrease. Similarly observations were recorded in practice of shavasana. Gore et al (1980) observed during the study that the increase in heart rate during the Paschimottan (6.2%) was minimum in comparison to increase in isometric (31.8%) and isotonic (13.2%) type of exercises. Rao et al (1980) measured the blood glucose levels in relation to yogic breathing exercises in 25 normal volunteers and 12 confirmed diabetic patients for a period of 3 months. He observed 18 out of 25 volunteers and 8 out of 12 diabetic patients showed a significant decrease in their blood glucose value.

Much work has been done on yoga but a more concerted and methodical approach is still needed on this budding scientific curiosity as this will not only give results of applied value but will also go a long way in unravelling the brain mechanisms for higher mental functions. More accurate biochemical, biophysical and neuro-biological changes should be linked to performance of various yogic techniques and it should be ascertained if this practice is of preventive importance only or of curative value also.