CHAPTER 1

THE CATEGORY FTOP

Introduction

Categorical approach in fuzzy set theory was initiated by J.A. Goguen [25], R. Lowen [42], C.K. Wong [76], S.E. Rodabaugh [59], P. Eklund [17-18] and U. Cerruti [6]. Goguen in [25] gave the first categorical definition of fuzzy sets. He constructed the category Set-L, where the objects are \((X, \mu)\) where \(\mu : X \rightarrow L\) is an \(L\)-fuzzy subset of \(X\) and the morphisms\(f : (X, \mu) \rightarrow (Y, \beta)\) are functions \(f : (X, \mu) \rightarrow (Y, \beta)\) such that for every \(x \in X\), \(\mu(x) \leq \beta(f(x))\). C.K. Wong [76] defined two categories \(\mathcal{R}_1\) and \(\mathcal{R}_2\) of fuzzy sub sets as follows:

Let \((X, \alpha)\) denote the ordered pair of a set \(X\) and a fuzzy sub set \(\alpha\) of \(X\). Then \(\mathcal{R}_1\) is the collection of all \((X, \alpha), (Y, \beta)\).... For each pair of objects \((X, \alpha), (Y, \beta)\) of \(\mathcal{R}_1\) define a set \(\text{mor} \{X, \alpha), (Y, \beta)\} = \{f, f\}_{\alpha \beta}\) where \(f\) ranges over all possible set mappings from \(X\) to \(Y\) and \(f\) is the induced mapping from fuzzy set \(\alpha\) to fuzzy set \(\beta\) defined by \(f(\mu(x)) = \mu(f(x))\). Also \(\mathcal{R}_2\) is the collection of all \((X, \mathcal{A})\) where \(\mathcal{A}\) denotes the collection of all fuzzy subsets of \(X\). For any two objects \((X, \mathcal{A}), (Y, \mathcal{B})\) of \(\mathcal{R}_2\) define \(\text{mor} \{X, \mathcal{A}), (Y, \mathcal{B})\} = \{f, f\}_{\mathcal{A} \mathcal{B}}\) where \(f\) ranges over all possible...
set mappings from \(X \) to \(Y \) and \(f \) is the collection of all mappings from any fuzzy set \(A \) in \(X \) to any fuzzy set \(B \) in \(Y \) induced by \(f \).

In the case of fuzzy topology, there are various interesting categories of fuzzy topological spaces available in the literature. The collection of all fuzzy topological spaces and fuzzy continuous maps form a category. Since C.L.Chang [8], R.Lowen [37] and J.A.Goguen [24] have defined fuzzy topology in different ways, each of them defines a different category of fuzzy topological spaces.

In 1983 S.E.Rodabaugh [59] defined a new fuzzy topological category FUZZ. It is a significant generalization of all previous approaches to fuzzy topology. The objects of FUZZ are of the form \((X,L,T)\) where \((X,T)\) is an L-fuzzy topological space where \(L \) is a complete distributive lattice with universal bounds and order reversing involution. A morphism from \((X_1,L_1,T_1)\) to \((X_2,L_2,T_2)\) is a pair \((f,\phi)\) satisfying the following conditions.

i) \(f:X_1 \rightarrow X_2 \) is a function

ii) \(\phi^{-1}:L_2 \rightarrow L_1 \) is a function preserving \(\cap, \cup \)

iii) \(V \in T_2 \mapsto \phi^{-1} \circ V \circ f \in T_1 \)
In this chapter we introduce a new category FTOP, which appears to be the best framework to define fuzzy topological semigroups. In section 1 of this chapter we define an L-fuzzy topological space \((X, \mu, F)\) and obtain some of its basic properties.

In section 2 we define FTOP. The objects of FTOP are "L-fuzzy topological spaces" \((X, \mu, F)\) and the morphisms are the "fuzzy continuous maps" between two L-fuzzy topological spaces. The subcategories, subobjects, initial objects and final objects in FTOP are obtained. Also we find relations between FTOP and some other categories of fuzzy topological spaces.

1.1 L-fuzzy topological spaces

Definition 1.1.1

Let \(X\) be a set, \(\mu : X \rightarrow \mathbb{L}\) be an L-fuzzy subset of \(X\) and \(F\) be a subset of \(X\) satisfying the following conditions:

i) \(g \in F \implies g(x) \leq \mu(x) \ \forall \ x \in X\)

ii) \(\{g_i \text{ where } i \in I\} \subseteq F \implies \bigcup\{g_i \text{ where } i \in I\} \in F\)

iii) \(g_1, g_2 \in F \implies g_1 \cap g_2 \in F\)

iv) \(1, \mu \in F\) where \(1, \mu\) is a constant map from \(X\) to \(\mathbb{L}\) which takes the value 0 for every point \(x \in X\).
The triple \((X, \mu, F)\) is called an \(L\)-fuzzy topological space subordinate to \(\mu\) (or where there is no chance for confusion just \(L\)-fuzzy topological space). The members of \(F\) are called \(L\)-fuzzy open sets and the complements of members of \(F\) are called \(L\)-fuzzy closed sets.

If \(F\) consists of all \(L\)-fuzzy sub sets of \(X\) which are less than \(\mu\), it is called discrete \(L\)-fuzzy topology and if it consists of 1 and \(\mu\) only, it is called indiscrete \(L\)-fuzzy topology.

Remark

When \(L=[0,1]\) and \(\mu=\chi\) such that \(\chi(x)=1\) \(\forall x \in X\), an \(L\)-fuzzy topological space is nothing but a Chang's fuzzy space.

Definition 1.1.2

Let \((X_1, \mu_1, F_1)\) and \((X_2, \mu_2, F_2)\) be two \(L\)-fuzzy topological spaces. A mapping \(g\) of \((X_1, \mu_1, F_1)\) into \((X_2, \mu_2, F_2)\) is fuzzy continuous if:

i. \(\mu_1(x) \leq \mu_2(g(x)), \forall x \in X_1\)

ii. \(\mu_1 \cap g^{-1}(u) \in F_1, \forall u \in F_2\)
Remark

When \(L = [0,1] \), \(\mu_1 = \mu_1^X \) and \(\mu_2 = \mu_2^X \) this definition coincides with the definition 0.1.3.

Proposition 1.1.3

If \(f : (X_1, \mu_1^X, F_1) \longrightarrow (X_2, \mu_2^X, F_2) \) and \(g : (X_2, \mu_2^X, F_2) \longrightarrow (X_3, \mu_3^X, F_3) \) are fuzzy continuous then \(g \circ f \) is also fuzzy continuous.

Proof

Since \(f \) and \(g \) are fuzzy continuous,

\[
\mu_1(x) \leq \mu_2(f(x)), \forall x \in X_1
\]

Let \((X, \mu, F)\) be an \(L \)-fuzzy topological space, \(Y \subset X \). Let \(Y \subset X \) and \(Y = \{ U \mid U \subset F \} \), then \((Y, \gamma, \mathcal{V})\) is a subspace of \((X, \mu, F)\).

and

\[
\mu_2(x) \leq \mu_3(g(x)), \forall x \in X_2
\]

If \(Y \subset X \) and \(f : (X_1, \mu_1^X, F_1) \longrightarrow (X_2, \mu_2^X, F_2) \) is fuzzy continuous, then \(f \) restricted to the subspace \((Y, \gamma, \mathcal{V})\) is fuzzy continuous.

By (1) \(\mu_1(x) \leq \mu_2((f(x)) \forall x \in X_1 \)

\[
\leq \mu_3(g(f(x)) \forall x \in X_1 \quad \text{by (2)}
\]

\[
= \mu_3(g \circ f)(x) \forall x \in X_1
\]
That is $\mu_1 \cap f^{-1}(\mu_2 \cap g^{-1}(V)) \in F_1$ by (1) & (2)

That is $\mu_1 \cap f^{-1}(\mu_2) \cap f^{-1}(g^{-1}(V)) \in F_1$

That is $\mu_1 \cap f^{-1}(g^{-1}(V)) \in F_1 \{\mu_1(x) \leq \mu_2(f(x)) \forall x \in X\}$

That is $f^{-1}(u) \cap \{\mu_1(x) \leq f^{-1}(\mu_2)(x) \forall x \in X\}$

That is $\mu_1 \cap (g \circ f)^{-1}(V) \in F_1 \forall V \in F_3$

Therefore $g \circ f$ is fuzzy continuous.

Definition 1.1.4

Let (X, μ, F) be an L-fuzzy topological space, $\mu \in \mathcal{U}$ be any fuzzy subset of X. Then the induced fuzzy topology on Y is the family of fuzzy subsets of Y which are the intersections with μ of L-fuzzy open subsets of X. The induced L-fuzzy topology is denoted by F_Y and the triple (X, μ, F_Y) is called a subspace of (X, μ, F).

Proposition 1.1.5

If $Y \subseteq X$ and $f:(X_1, \mu_1, F_1) \rightarrow (X_2, \mu_2, F_2)$ is fuzzy continuous, then f restricted to the subspace (Y, γ, \mathcal{U}) is fuzzy continuous.

Proof:

We have $\gamma = \mu_1|_Y$ for $i = 1, 2$ then f is fuzzy continuous from (X_1, μ_1, F_1) if $\mu_1(x) \leq \mu_2(f(x)) \forall x \in X_1$. Therefore f is fuzzy continuous on (Y, γ, \mathcal{U}).

Therefore $g \circ f$ is fuzzy continuous.
Let \(U \in F_2 \), then \(f^{-1}(U) \cap \mu_1 \in F_1 \)

That is \(\left\{ f^{-1}(U) \cap \mu_1 \right\} \) \(\in \mathcal{U} \)

That is \((f^{-1}(U) \cap 1_Y) \cap (\mu_1 \cap 1_Y) \in \mathcal{U} \)

That is \((f \mid_1)^{-1}(U) \cap Y \in \mathcal{U} \)

Therefore \(f \mid_1 \) is fuzzy continuous.

Definition 1.1.6

Let \((X, \mu, F) \) be an \(L \)-fuzzy topological space, \(\mu \subseteq \mu \) be any fuzzy subset of \(X \). Then the induced fuzzy topology on \(\mu \) is the family of fuzzy subsets of \(X \) which are the intersections with \(\mu \) of \(L \)-fuzzy open subsets of \(X \). The induced \(L \)-fuzzy topology is denoted by \(F_{\mu'} \) and the triple \((X, \mu', F_{\mu'}) \) is called induced fuzzy sub space of \((X, \mu, F) \).

Proposition 1.1.7

If \((X_1, \mu_1', F_{\mu_1'}) \longrightarrow (X_2, \mu_2', F_{\mu_2'}) \) is fuzzy continuous and \(\mu_i \subseteq \mu_i \) for \(i = 1,2 \) then \(f \) is fuzzy continuous from \((X_1, \mu_1', F_{\mu_1'}) \) to \((X_2, \mu_2', F_{\mu_2'}) \) if \(\mu_1'(x) \leq \mu_2'(f(x)) \forall x \in X_1 \).
We have to show that \(\mu_1 \cap f^{-1}(U') \in F \), \(\forall U' \in F' \).

Let \(U' \in F' \).

That is \(U' = \mu_2' \cap U \) for some \(U \in F_2 \).

Therefore \(\mu_1' \cap f^{-1}(U') = \mu_1' \cap f^{-1}(\mu_2') \cap f^{-1}(U) \)

\[= \mu_1' \cap f^{-1}(\mu_2') \cap f^{-1}(U) \]

Since \(\mu_1 \preceq f^{-1}(\mu_2) \)

\[\in F_{\mu_1'} \]

Definition 1.1.8

Let \(\left\{(X_i, \mu_i, F_i) \mid i \in I \right\} \) be a family of L-fuzzy topological spaces. We define their product \(\prod_{i \in I} (X_i, \mu_i, F_i) \) to be the L-fuzzy topological space \((X, \mu, F) \), where \(X = \prod_{i \in I} X_i \) is the usual set product, \(\mu \) the product fuzzy set in \(X \) whose membership function is defined by

\[\mu(x) = \inf_{i \in I} \{ \mu_i(x_i) \mid x = (x_i) \in X \} \]

and \(F \) is generated by the sub basis \(\beta = \left\{ p_i^{-1}(U_i) \cap \mu \mid i \in I \right\} \).
Proposition 1.1.9

i) For each $\alpha \in I$ the projection map p_α is fuzzy continuous.

ii) The product L-fuzzy topology is the smallest L-fuzzy topology for X such that i) is true.

iii) Let (Y, γ, \mathcal{U}) be an L-fuzzy topological space and let f be a function from (Y, γ, \mathcal{U}) to (X, μ, F), then f is fuzzy continuous if and only if $\forall \alpha \in I$, $p_\alpha \circ f$ is fuzzy continuous.

Proof

(i) & (ii) follows from the definition of product L-fuzzy topology.

(iii) Suppose $f: (Y, \gamma, \mathcal{U}) \rightarrow (X, \mu, F)$ is fuzzy continuous since p_α is fuzzy continuous the composition $p_\alpha \circ f$ is fuzzy continuous.

Conversely suppose $p_\alpha \circ f$ is fuzzy continuous $\forall \alpha \in I$ then $\gamma \cap (p_\alpha \circ f)^{-1}(U) \in \mathcal{U}$ $\forall U \in F$ $\forall \alpha$ which is $\gamma \cap f^{-1}(p_\alpha^{-1}(U)) \in \mathcal{U}$ $\forall U \in F$ $\forall \alpha$ that is $\gamma \cap f^{-1}(U) \in \mathcal{U}$ where $U = p_\alpha^{-1}(U)$ therefore f is fuzzy continuous. (by using definition 1.1.8)

Definition 1.1.10

Let (X, μ, F) be an L-fuzzy topological space, R be an equivalence relation on X. Let X/R be the usual quotient set
and \(p: X \longrightarrow X/R \) be the usual quotient map. We define the quotient \(L \)-fuzzy topology as follows

let \(\nu = p(\mu) \) so that \(\nu \) is an \(L \)-fuzzy set in \(X/R \) and

\[
\mathcal{U} = \left\{ U: X/R \longrightarrow L \left| p^{-1}(U) \cap \mu \in \mathcal{F} \right. \right\}.
\]

Then \((X/R, \nu, \mathcal{U})\) is the quotient space of \((X, \mu, \mathcal{F})\).

Proposition 1.1.11

let \((X, \mu, \mathcal{F})\) be an \(L \)-fuzzy topological space and
\((X/R, \nu, \mathcal{U})\) be the quotient space of \((X, \mu, \mathcal{F})\), then:

i) \(p: (X, \mu, \mathcal{F}) \longrightarrow (X/R, \nu, \mathcal{U}) \) is fuzzy continuous

ii) Let \((X_1, \mu_1, \mathcal{F}_1)\) be an \(L \)-fuzzy topological space and \(g \) be a function from the quotient fuzzy space \((X/R, \nu, \mathcal{U})\) to \((X_1, \mu_1, \mathcal{F}_1)\) then \(g \) is fuzzy continuous if and only if \(g \circ p \) is fuzzy continuous

Proof

i) It is trivial from the definition of quotient \(L \)-fuzzy topology.

ii) Suppose \(g \) is fuzzy continuous, then the composition \(g \circ p \) is fuzzy continuous

conversely suppose \(g \circ p \) is fuzzy continuous

that is \(\mu \cap (g \circ p)^{-1}(U) \in \mathcal{F} \) \(\forall \ U \in \mathcal{F}_1 \)
that is \(p^{-1}(g^{-1}(U)) \subset F \forall U \subset F_1 \)

that is \(g^{-1}(U) \in U \) (by the definition of quotient L-fuzzy topology)

hence \(\nu \cap (g^{-1}(U)) \) is open in \(X/R \).

Therefore \(g \) is fuzzy continuous.

1.2 Categories of L-fuzzy topological spaces

Definition 1.2.1

Let \(\mathcal{C} \) be the collection of all L-fuzzy topological spaces \((X, \mu, F)\). For each pair of objects \((X_1, \mu_1, F_1)\) and \((X_2, \mu_2, F_2)\) of \(\mathcal{C} \) let \(\text{mor} \left[(X_1, \mu_1, F_1), (X_2, \mu_2, F_2) \right] \) be the set of all fuzzy continuous mappings from \((X_1, \mu_1, F_1)\) to \((X_2, \mu_2, F_2)\). Clearly \(\mathcal{C} \) constitutes a category; we denote this category by \(\text{FTOP} \).

Results. 1.2.2

In \(\text{FTOP} \) the monomorphisms are the injections in the usual sense.
For let \(f: (X_1, \mu_1, F_1) \longrightarrow (X_2, \mu_2, F_2) \) be an injection.

Consider two morphisms \(g_1, g_2: (X_3, \mu_3, F_3) \longrightarrow (X_1, \mu_1, F_1) \)

and suppose \(f \circ g_1 = f \circ g_2 \)

that is \((f \circ g_1)(x) = (f \circ g_2)(x) \quad \forall x \in X_3 \)

that is \(f(g_1(x)) = f(g_2(x)) \quad \forall x \in X_3 \)

that is \(g_1(x) = g_2(x) \quad \forall x \in X_3 \)

that is \(g_1 = g_2 \)

Conversely, if \(f \) is not an injection, and let \(f \circ g_1 = f \circ g_2 \)

that is \((f \circ g_1)(x) = (f \circ g_2)(x) \quad \forall x \in X_3 \)

that is \(f(g_1(x)) = f(g_2(x)) \quad \forall x \in X_3 \)

that is \(g_1(x) \neq g_2(x) \quad \forall x \in X_3 \)

that is \(g_1 \neq g_2 \)

Therefore \(f \) can not be a monomorphism.

Similarly, we can show that the epimorphisms of \(FTOP \)

are the surjections.

An object \(\{x\}, 1_{|x|}, F \) where \(|x| \) denotes any one point

set, \(1_{|x|} \) is an L-fuzzy subset of \(|x| \) such that \(1_{|x|} = 1 \) and \(\{x\} \)

\(F = \{0, 1_{|x|}\} \) is a terminal object of \(FTOP \).
For each object \((X, \mu, F)\) of \(\text{FTOP}\) the subspace \((Y, \gamma, \mathcal{U})\) (cf. definition 1.2.4) and the induced fuzzy subspace \((X, i(F))\) where \(i(F)\) denotes the smallest topology on \(X\) such that each member of \(F\) a l.s.c.map.

\(\mathcal{C}_1\) consists of those objects \((X, \mu, F)\) for a fixed \(X\) together with the morphisms and \(\mathcal{C}_2\) consists of those objects \((X, \mu, F)\) where \(\mu\) is fixed for a particular \(X\). Clearly \(\mathcal{C}_1\) and \(\mathcal{C}_2\) are sub categories of \(\text{FTOP}\).

Relation between \(\text{FTOP}\) and other categories

Consider the following Functors \(\mathcal{F}_1, \mathcal{F}_2\)

1) where \(\mathcal{F}_1, \mathcal{F}_2 : \text{TOP} \rightarrow \text{FTOP}\) such that \(\mathcal{F}_1(X,T) = (X, 1, F)\) is generated by the sub basis \(\mathcal{S} = \{g_1 \times g_2 : g_1 \in F_1 \text{ and } g_2 \in F_2\}\) and \(\mathcal{F}_2(X,T) = (X, 1, \mathcal{U})\) where \(\mathcal{U} = \{\lambda_U : U \subseteq T \mid \lambda_U \text{ denote a characteristic map of } U\}\)

\(\mathcal{F}_2(f) = f\)

Clearly \(\mathcal{F}_1\) embedds \(\text{TOP}\) into a full subcategory of \(\text{FTOP}\).
2) Consider $F_3 : \text{FTOP} \longrightarrow \text{TOP}$

$$F_3(X, \mu, F) = (X, i(F))$$

where $i(F)$ denotes the smallest

topology on X such that each member of F a l.s.c.map.

and $F_3(f) = f$

Product objects in FTOP

Let (X_1, μ_1, F_1) and (X_2, μ_2, F_2) be two objects in FTOP.

In the categorical sense we define their product (X_1, μ_1, F_1)

$x (X_2, \mu_2, F_2)$ as $(X_1 \times X_2, \mu_1 \times \mu_2, F_1 \times F_2, \pi_1, \pi_2)$ where $F_1 \times F_2$

is generated by the sub basis $S = \left\{ g_1 \times \mu_2 \mid g_1 \in F_1 \right\} \cup$

$\left\{ \mu_1 \times g_2 \mid g_2 \subset F_2 \right\}$ and $\pi_i : X_1 \times X_2 \longrightarrow X_i$ (i=1,2) are

ordinary projections.