LIST OF FIGURES

5.1 Proposed w/b ratio Vs compressive strength relationship 49
5.2 Test specimens for strength and durability tests 54
6.1 Compression test on HPC cube specimen in-progress 64
6.2 Patterns of typical failure mode shapes of HPC cube specimens 65
6.3 Compression test on HPC cylinder specimen in-progress 66
6.4 Test set up for splitting tensile strength on HPC cylinder specimen 67
6.5 Patterns of typical splitting tensile failure mode shapes of HPC cylinder specimens 67
6.6 Test set up for flexural strength on HPC prism specimen 68
6.7 Test set up for compressive strain measurements on HPC cylinder specimen 69
6.8 Test set up for flexural toughness on HPC prism specimen 71
6.9 Flexural toughness failure of the prism specimen 71
6.10 Ultrasonic pulse velocity test set up on HPC cube specimen in-progress 72
6.11 Workability through slump values 77
6.12 Workability through compaction factor values 77
6.13 Workability through vee-bee values 78
6.14 Influence of silica fume on compressive strength of M60 grade HPC trial mixes at various ages 91
6.15 Influence of silica fume on compressive strength of M70 grade HPC trial mixes at various ages 91
6.16 Influence of silica fume on compressive strength of M80 grade HPC trial mixes at various ages 92
6.17 Influence of silica fume on compressive strength of M90 grade HPC trial mixes at various ages 92
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.18</td>
<td>Influence of silica fume on compressive strength of M100 grade HPC trial mixes at various ages</td>
</tr>
<tr>
<td>6.19</td>
<td>Influence of silica fume on compressive strength of M110 grade HPC trial mixes at various ages</td>
</tr>
<tr>
<td>6.20</td>
<td>Development of compressive strength for M60 grade HPC trial mixes at various ages</td>
</tr>
<tr>
<td>6.21</td>
<td>Development of compressive strength for M70 grade HPC trial mixes at various ages</td>
</tr>
<tr>
<td>6.22</td>
<td>Development of compressive strength for M80 grade HPC trial mixes at various ages</td>
</tr>
<tr>
<td>6.23</td>
<td>Development of compressive strength for M90 grade HPC trial mixes at various ages</td>
</tr>
<tr>
<td>6.24</td>
<td>Development of compressive strength for M100 grade HPC trial mixes at various ages</td>
</tr>
<tr>
<td>6.25</td>
<td>Development of compressive strength for M110 grade HPC trial mixes at various ages</td>
</tr>
<tr>
<td>6.26</td>
<td>Variation of compressive strength for M60 grade HPC trial mixes with respect to % of silica fume at various ages</td>
</tr>
<tr>
<td>6.27</td>
<td>Variation of compressive strength for M70 grade HPC trial mixes with respect to % of silica fume at various ages</td>
</tr>
<tr>
<td>6.28</td>
<td>Variation of compressive strength for M80 grade HPC trial mixes with respect to % of silica fume at various ages</td>
</tr>
<tr>
<td>6.29</td>
<td>Variation of compressive strength for M90 grade HPC trial mixes with respect to % of silica fume at various ages</td>
</tr>
<tr>
<td>6.30</td>
<td>Variation of compressive strength for M100 grade HPC trial mixes with respect to % of silica fume at various ages</td>
</tr>
<tr>
<td>6.31</td>
<td>Variation of compressive strength for M110 grade HPC trial mixes with respect to % of silica fume at various ages</td>
</tr>
</tbody>
</table>
6.32 Relationship between compressive strength and water-binder materials ratio of silica fume-based concrete
6.33 Influence of SF on cylinder compressive strength of M60, M70 & M80 grades of HPC mixes at 28 days
6.34 Influence of SF on cylinder compressive strength of M90, M100 & M110 grades of HPC mixes at 28 days
6.35 Variation of cylinder compressive strength with respect to percentage of silica fume at the age of 28 days
6.36 Influence of SF on splitting tensile strength of M60, M70 & M90 grades of HPC trial mixes at 28 days
6.37 Influence of SF on splitting tensile strength of M90, M100 & M110 grades of HPC trial mixes at 28 days
6.38 Variation of splitting tensile strength with respect to percentage of silica fume at the age of 28 days
6.39 Relationship between cube compressive strength and splitting tensile strength of HPC mixes
6.40 Influence of SF on flexural strength of M60, M70 & M80 grades of HPC trial mixes at 28 days
6.41 Influence of SF on flexural strength of M90, M100 & M110 grades of HPC trial mixes at 28 days
6.42 Variation of flexural strength with respect to percentage of silica fume at the age of 28 days
6.43 Relationship between cube compressive strength and flexural strength of HPC mixes
6.44 Stress-strain curve at 28 days for M80 grade HPC trial mix (10% SF)
6.45 Variation of modulus of elasticity with respect to percentage of silica fume at the age of 28 days
6.46 Relationship between cube compressive strength and modulus of elasticity of HPC mixes 122
6.47 Load-deflection curve of M60 grade HPC trial mix (0% SF) 123
7.1 Specimens in hot air oven for saturated water absorption test 132
7.2 View of water permeability test set up 135
7.3 View of abrasion test set up 137
7.4 View of Schrader drop weight impact test set up 138
7.5 Failed concrete specimens due to impact load 139
7.6 Test specimens for rapid chloride penetration 141
7.7 View of rapid chloride penetration test set up 142
7.8 Specimens after testing rapid chloride penetration 142
7.9 Test specimens for accelerated electrolytic corrosion 144
7.10 View of accelerated electrolytic corrosion test set up 144
7.11 View of corroded specimens of normal concrete (0% SF) after accelerated electrolytic corrosion test 145
7.12 View of silica fume-based concrete specimens after accelerated electrolytic corrosion test 145
7.13 Influence of silica fume on water absorption of M60 grade HPC trial mixes 151
7.14 Influence of silica fume on water absorption of M70 grade HPC trial mixes 151
7.15 Influence of silica fume on water absorption of M80 grade HPC trial mixes 152
7.16 Influence of silica fume on water absorption of M90 grade HPC trial mixes 152
7.17 Influence of silica fume on water absorption of M100 grade HPC trial mixes 153
7.18 Influence of silica fume on water absorption of M110 grade HPC trial mixes 153
7.19 Variation of saturated water absorption of HPC mixes with respect to percentage of silica fume at 28 days 154
7.20 Variation of saturated water absorption of HPC mixes with respect to percentage of silica fume at 90 days 154
7.21 Influence of silica fume on porosity of M60 grade HPC trial mixes 159
7.22 Influence of silica fume on porosity of M70 grade HPC trial mixes 159
7.23 Influence of silica fume on porosity of M80 grade HPC trial mixes 160
7.24 Influence of silica fume on porosity of M90 grade HPC trial mixes 160
7.25 Influence of silica fume on porosity of M100 grade HPC trial mixes 161
7.26 Influence of silica fume on porosity of M110 grade HPC trial mixes 161
7.27 Variation of porosity of HPC mixes with respect to percentage of silica fume at the age of 28 days 162
7.28 Variation of porosity of HPC mixes with respect to percentage of silica fume at the age of 90 days 162
7.29 Influence of silica fume on sorptivity of M60 grade HPC trial mixes 166
7.30 Influence of silica fume on sorptivity of M70 grade HPC trial mixes 166
7.31 Influence of silica fume on sorptivity of M80 grade HPC trial mixes 167
7.32 Influence of silica fume on sorptivity of M90 grade HPC trial mixes 167

7.33 Influence of silica fume on sorptivity of M100 grade HPC trial mixes 168

7.34 Influence of silica fume on sorptivity of M110 grade HPC trial mixes 168

7.35 Variation of sorptivity of HPC mixes with respect to percentage of silica fume at the age of 28 days 169

7.36 Variation of sorptivity of HPC mixes with respect to percentage of silica fume at the age of 90 days 169

7.37 Influence of silica fume on acid resistance of M60, M70 and M80 grades of HPC trial mixes at 28 days 174

7.38 Influence of silica fume on acid resistance of M90, M100 and M110 grades of HPC trial mixes at 28 days 174

7.39 Variation of acid resistance of HPC mixes with respect to percentage of silica fume at 28 days 175

7.40 Influence of silica fume on sea water resistance of M60, M70 and M80 grades of HPC trial mixes at 28 days 178

7.41 Influence of silica fume on sea water resistance of M90, M100 and M110 grades of HPC trial mixes at 28 days 179

7.42 Variation of sea water resistance of HPC mixes with respect to percentage of silica fume at 28 days 179

7.43 Influence of silica fume on abrasion resistance of M60, M70 and M80 grades of HPC trial mixes at 28 days 183

7.44 Influence of silica fume on abrasion resistance of M90, M100 and M110 grades of HPC trial mixes at 28 days 184

7.45 Variation of abrasion resistance of HPC mixes with respect to percentage of silica fume at 28 days 184
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.46</td>
<td>Influence of silica fume on impact strength of M60, M70 and M80 grades of HPC trial mixes at 28 days</td>
</tr>
<tr>
<td>7.47</td>
<td>Influence of silica fume on impact strength of M90, M100 and M110 grades of HPC trial mixes at 28 days</td>
</tr>
<tr>
<td>7.48</td>
<td>Variation of impact strength of HPC mixes with respect to percentage of silica fume at 28 days</td>
</tr>
<tr>
<td>7.49</td>
<td>Influence of silica fume on chloride penetration of M60, M70 and M80 grades of HPC trial mixes at 28 days</td>
</tr>
<tr>
<td>7.50</td>
<td>Influence of silica fume on chloride penetration of M90, M100 and M110 grades of HPC trial mixes at 28 days</td>
</tr>
<tr>
<td>7.51</td>
<td>Variation of chloride penetration of HPC mixes with respect to percentage of silica fume at 28 days</td>
</tr>
<tr>
<td>7.52</td>
<td>Variation of loss of weight of rebar in corrosion with respect to percentage of silica fume at 28 days</td>
</tr>
<tr>
<td>7.53</td>
<td>Influence of silica fume on alkalinity of M60, M70 and M80 grades of HPC trial mixes at 28 days</td>
</tr>
<tr>
<td>7.54</td>
<td>Influence of silica fume on alkalinity of M90, M100 and M110 grades of HPC trial mixes at 28 days</td>
</tr>
<tr>
<td>7.55</td>
<td>Influence of silica fume on alkalinity of M60, M70 and M80 grades of HPC trial mixes at 56 days</td>
</tr>
<tr>
<td>7.56</td>
<td>Influence of silica fume on alkalinity of M90, M100 and M110 grades of HPC trial mixes at 56 days</td>
</tr>
<tr>
<td>7.57</td>
<td>Variation of pH value of HPC mixes with respect to percentage of silica fume at the age of 28 days</td>
</tr>
<tr>
<td>7.58</td>
<td>Variation of pH value of HPC mixes with respect to percentage of silica fume at the age of 56 days</td>
</tr>
</tbody>
</table>