CONTENTS

List of Tables ix

List of Figures x

Abstract xvi

Chapter 1: Introduction to Semiconductor materials 1
1.1. Band theory of Solids 2
1.2. Semiconductor materials 3
1.3. Direct and indirect band gap semiconductors 4
1.4. Generation and recombination process 5
 1.4.1. Direct recombination 5
 1.4.2. Indirect recombination 6
 1.4.3. Surface recombination 6
1.5. Semiconductor device: p-n junction 7
1.6. Solar cells 10
1.7. Historical development of thin film solar cells (TFSC) 14
1.8. Solar cell configuration 14
 1.8.1. Superstrate configuration 15
 1.8.2. Substrate configuration 15
1.9. CdS/CdTe thin film solar cell 16
 1.9.1. Substrate 16
 1.9.2. Front contact (TCO) 16
 1.9.3. Window layer 17
 1.9.4. Absorber 17
 1.9.5. Back contact 17
 1.9.6. Advantages of CdS/CdTe heterojunction solar cell 17
Bibliography 20
Chapter 2: Techniques of deposition and Characterization of Semiconductor thin films

2.1. Introduction

2.2. Substrate materials

2.3. Thin film deposition techniques

2.3.1. Physical Vapour Deposition (PVD) techniques

2.3.1.1. Evaporation

2.3.1.2. Sputtering

2.3.1.3. Molecular Beam Epitaxy (MBE)

2.3.2. Chemical Vapor Deposition (CVD) techniques

2.3.3. Closed Space Sublimation (CSS)/Closed Space Vapour Transport (CSVT)

2.3.4. Chemical Solution Deposition (CSD) techniques

2.3.4.1. Electrochemical Deposition (ECD) or Electrodeposition

2.3.4.2. Chemical Bath Deposition (CBD)

2.3.4.3. Photochemical Deposition (PCD)

2.4. Characterization techniques

2.4.1. Introduction

2.4.2. Film thickness

2.4.3. X-ray diffraction (XRD)

2.4.4. UV-Visible Spectrophotometer

2.4.5. Scanning Electron Microscope (SEM) & Energy Dispersive X-ray Analysis (EDAX)

2.4.6. Atomic Force Microscope (AFM)

2.4.7. Photoluminescence (PL) analysis

2.4.8. Raman Spectroscopic Analysis

2.4.9. Resistivity by four-point probe technique

2.4.10. X-ray Photoelectron Spectroscopy (XPS)

Bibliography
Chapter 3: Experimental work: Deposition of CdS thin films by photochemical deposition (PCD) and characterization

3.1. Photochemical deposition: Salient features and CdS thin films on insulating glass substrates

3.2. Experiment

3.3. Photochemical reactions

3.4. Experimental procedure

3.4.1. PCD-CdS thin films using Cadmium sulphate as Cd source

3.4.2. PCD-CdS thin films using Cadmium nitrate as Cd source

3.4.3. PCD-CdS thin films using Cadmium acetate as Cd source

3.4.4. PCD-CdS thin films using Cadmium chloride as Cd source

3.5. Results and discussion

3.5.1. Characterization of CdS thin films deposited using CdSO₄ as Cd source

3.5.1.1. Structural characterization by XRD

3.5.1.2. Scanning Electron Microscope (SEM)

3.5.1.3. Energy Dispersive X-ray Analysis (EDAX)

3.5.1.4. Atomic Force Microscope (AFM)

3.5.1.5. Electrical characterization

3.5.1.6. X-ray Photoelectron Spectroscopy (XPS) analysis

3.5.2. Characterization of CdS thin films deposited using Cd(NO₃)₂ as Cd source

3.5.2.1. Structural characterization by XRD

3.5.2.2. Scanning Electron Microscope (SEM)

3.5.2.3. Energy Dispersive X-ray Analysis (EDAX)

3.5.2.4. Atomic Force Microscope (AFM)

3.5.3. Characterization of CdS thin films deposited using CdSO₄ as Cd source (Deposition time-40 minutes)

3.5.3.1. UV-Visible spectrophotometer

3.5.3.2. Photoluminescence (PL) studies

3.5.3.3. Raman analysis

3.5.3.4. Scanning Electron Microscope (SEM)

3.5.3.5. Atomic Force Microscope (AFM)

3.5.4. Comparison between CdS thin films deposited by CdSO₄ as Cd source and Cd(NO₃)₂ as Cd source

Bibliography
Chapter 4: Experimental work: Deposition of CdS thin films by chemical bath deposition (CBD) and characterization

4.1. Chemical bath deposition: CdS thin films on insulating glass substrates

4.2. Experiment

4.2.1. Preparation of stock solution

4.2.2. Substrate cleaning

4.2.3. Chemical bath

4.2.4. Experimental procedure

4.2.5. Reaction mechanism of formation of CdS

4.3. Annealing of CdS thin films

4.4. Results and discussion

4.4.1. Thickness of the film

4.4.2. Structural analysis by XRD

4.4.3. UV-Visible spectrophotometer

4.4.4. Scanning Electron Microscope (SEM)

4.4.5. Atomic Force Microscope (AFM)

4.4.6. Energy Dispersive X-ray Analysis (EDAX)

4.4.7. Photoluminescence (PL) study

4.4.8. Raman analysis

4.4.9. X-ray Photoelectron Spectroscopy (XPS) analysis

Bibliography

Chapter 5: Summary of the results: Conclusion and future scope

Bibliography

List of Publications