CONTENTS

Chapter I

REVIEW OF THE HISTORICAL WORK AND THE PROBLEM.

1.1 Introduction
1.2 Bibliography
1.3 Survey of Literature
1.4 Potential energy curves
1.5 Empirical potential energy functions
1.6 Reduced potential energy curves.
1.7 Dissociation energies
1.8 The Problem
Chapter II

EXCITATION OF BaO AND EXPERIMENTAL

SET UP

2.1 Excitation of the BaO 24
2.2 Salient features of the spectrograph 26
2.3 Photography of the spectrum 28
2.4 Measurement of wavelengths and
 Conversion to vacuum wavenumbers 30
2.5 Processing of the data 31
2.6 Microphotometry 31

Chapter III

ROTATIONAL ANALYSIS

3.1 Experimental 33
3.2 Analysis 34
3.3 Combination Relations 36
3.4 Band Origin 37
3.5 Regression analysis and polynomial fits 38
3.6 Conclusions 40

Chapter IV

INTENSITY MEASUREMENTS AND
ROTATIONAL TEMPERATURE

4.1 Concept of the rotational temperature 41
4.2 Rotational temperature and population 43
4.3 Relation between the intensity of a
Spectral line and the arc under its profile 45
4.4 Photographic photometry 47
4.5 Rotational temperature 49
4.6 Calculations for individual bands 51
4.7 Results and Discussion 53
Chapter V

EMPIRICAL POTENTIAL ENERGY FUNCTIONS & REDUCED POTENTIAL CURVES (RPC)

5.1 Potential Energy Functions 55

5.2 The Morse, Rydberg and Kratzer Potential Functions Rydberg Potential 56

5.3 Modification in Morse potential function 57

5.4 Combination of Morse Rydberg and Kratzer potential functions. 58

5.5 The Hulbert – Hirschfelder energy function Potential 59

5.6 Extended Rydberg Potential Function 60

5.7 The Tietz potential function 63

5.8 Comparison H-H, extended Rydberg and Tietz potential energy functions for the alkaline Earth oxide molecules. 67

5.9 Reduced Potential Energy Curves 68

5.10 Properties of RPC 70

5.11 Application of RPC 72

5.12 Results and Discussion 73

5.13 Recent trends in potential energy functions 76