List of figures

Fig. 3.1 : Block Diagram of TDR Unit
Fig. 3.2 : Geometrical construction of SMA cell
Fig. 3.3 : Fringing Field and SMA cell dimensions
Fig. 3.4 : Equivalent circuit of Transmission line
Fig. 3.5 : Reflected waveforms from sample cell
Fig. 3.6 : TDR data as function of time
Fig. 3.7 : Complex reflection coefficient spectra
Fig. AB1 : TDR waveform for 50% DMF
Fig. AB2 : Complex permittivity spectra for 50% DMF
Fig. AB3 : Cole-Cole plot for 50% DMF
Fig. AB4 : Variation of ε_0 with conc. of Formamide in Formamide + N,N- dimethylformamide) binary system
Fig. AB5 : Variation of τ with conc. of Formamide in (Formamide + N,N- dimethylformamide) binary system
Fig. AB6 : Relative change in τ and ε_0
Fig. AB7 : Variation of Excess relative permittivity of the solution
Fig. AB8 : Variation of excess inverse relaxation time with change in conc. of FMD
Fig. AB9 : Change in g^{eff} with volume fraction of FMD
Fig. AB10 : Arrhenius plots for (FMD + DMF) system
Fig. AB11 : Change in fB with volume fraction of DMF
Fig. AC1 : TDR waveforms for pure DMA
Fig. AC2 : Complex permittivity spectra for pure DMA
Fig. AC3 : Cole-Cole plot
Fig.AC4: Variation of ε_0 with conc. of Formamide in (Formamide + N,N- dimethylacetamide)

Fig.AC5: Variation of τ with conc. of Formamide in (Formamide + N,N- dimethylacetamide)

Fig.AC6: Relation between Relaxation time and static permittivity for (FMD + DMA) system

Fig.AC7: Excess permittivity versus conc. of FMD in (FMD + DMA)

Fig.AC8: Plot of excess inverse relaxation time versus conc. of FMD in (FMD+DMA) binary system

Fig.AC9: Plot of g^{eff} versus volume fraction of FMD in (FMD + DMA)

Fig.AC10: Plot of ln$(1/\tau)$ versus $1000/T$

Fig.AC11: Plot of Bruggeman factor versus vol. fr. of DMA

Fig.AD1: TDR waveform for pure ethanolamine

Fig.AD2: Complex permittivity spectra for pure ethanolamine

Fig.AD3: Cole-Cole plot

Fig. AD4: Variation of ε_0 with conc. of Formamide in (FMD+ETA)

Fig.AD5: Variation of τ with conc. of Formamide in (FMD+ETA)

Fig.AD6: Variation of τ and ε_0

Fig.AD7: Variation of excess permittivity with conc. of formamide

Fig.AD8: Variation of $(1/\tau)^E$ with conc. of FMD

Fig.AD9: Plot of g^{eff} versus conc. of FMD

Fig.AD10: Arrhenius plots

Fig.AD11: Plot of fB versus vol.% of ETA

Fig. AE1: TDR waveform for pure DMAE

Fig. AE2: Complex permittivity spectra for pure DMAE
Fig. AE3: Cole-Cole plot

Fig. AE4: Variation of ε_o with conc. of Formamide in (FMD + DMAE)

Fig. AE5: Variation of τ with conc. of Formamide in (FMD + DMAE)

Fig. AE6: Variation of τ and ε_o

Fig. AE7: Plot of excess permittivity V/s conc. of FMD

Fig. AE8: Plot of $(1/\tau)^E$ V/s conc. of FMD

Fig. AE9: Variation of g_{eff} with vol.fr. of FMD

Fig. AE10: Arrhenius plots

Fig. AE11: Plot of fB versus conc. of DMAE

Fig. BC1: TDR waveform for 50% DMF

Fig. BC2: Complex permittivity spectra for 50% DMF

Fig. BC3: Cole-Cole plot

Fig. BC4: Variation of ε_o with conc. of Formamide in (DMF + DMA)

Fig. BC5: Variation of τ with conc. of DMF in (DMF + DMA)

Fig. BC6: Variation of τ and ε_o

Fig. BC7: Variation of excess permittivity with conc. of DMF

Fig. BC8: Variation of $(1/\tau)^E$ with conc. of DMF

Fig. BC9: Plot of g_{eff} versus conc. of DMF

Fig. BC10: Arrhenius plots

Fig. BC11: Plot of fB versus conc. of DMA

Fig. BE1: TDR waveform for 50% DMAE

Fig. BE2: Complex permittivity spectra for 50% DMAE

xi
Fig. BE 3: Cole-Cole plot
Fig. BE 4: Variation of ε_0 with conc. of DMF in (DMF + DMAE)
Fig. BE 5: Variation of τ with conc. of DMF in (DMF + DMAE)
Fig. BE 6: Variation of τ and ε_0
Fig. BE 7: Plot of excess permittivity V/s conc. of DMF
Fig. BE 8: Plot of $(1/\tau)^E$ V/s wt.fr. of DMF
Fig. BE 9: Plot of g^{eff} versus vol. fr. of DMF
Fig. BE10: Arrhenius plots
Fig. BE 11: Plot of f_B versus conc. of DMAE
Fig. CD1: TDR waveform for 50% Ethanolamine
Fig. CD 2: Complex permittivity spectra for 50% Ethanolamine
Fig. CD 3: Cole-Cole plot
Fig. CD 4: Variation of ε_0 with conc. of DMA in (DMA + ETA)
Fig. CD 5: Variation of τ with conc. of DMA in (DMA + ETA)
Fig. CD 6: Variation of τ and ε_0
Fig. CD 7: Variation of excess permittivity with conc. of DMA
Fig. CD 8: Variation of $(1/\tau)^E$ with conc. of DMA in (DMA + ETA)
Fig. CD 9: Plot of g^{eff} versus conc. of DMA
Fig. CD 10: Arrhenius plots
Fig. CD 11: Plot of f_B versus vol.fr. of ETA
Fig. CE1: TDR waveform for 50% DMAE
Fig. CE 2: Complex permittivity spectra for 50% DMAE
Fig. CE 3: Cole-Cole plot
Fig. CE 4: Variation of ε_o with conc. of DMA in (DMA + DMAE)
Fig. CE 5: Variation of τ with conc. of DMA in (DMA + DMAE)
Fig. CE 6: Variation of τ and ε_o
Fig. CE 7: Variation of excess permittivity with conc. of DMA
Fig. CE 8: Variation of $(1/\tau)^E$ with conc. of DMA
Fig. CE 9: Plot of g^{eff} versus conc. of DMA
Fig. CE 10: Arrhenius plots
Fig. CE 11: Plot of fB versus vol.fr. of DMAE in (DMA + DMAE)
Fig. DE1: TDR waveform for 50% DMAE
Fig. DE 2: Complex permittivity spectra for 50% DMAE
Fig. DE 3: Cole-Cole plot
Fig. DE 4: Variation of ε_o with conc. of ETA in (ETA + DMAE)
Fig. DE 5: Variation of τ with conc. of ETA in (ETA + DMAE)
Fig. DE 6: Variation of τ and ε_o
Fig. DE 7: Variation of excess permittivity with conc. of ETA
Fig. DE 8: Variation of $(1/\tau)^E$ with conc. of ETA
Fig. DE 9: Plot of g^{eff} versus conc. of ETA
Fig. DE 10: Arrhenius plots
Fig. DE 11: Plot of fB versus vol.fr. of DMAE in (ETA + DMAE)