INDEX

CHAPTER-I PHYSICOCHEMICAL PROPERTIES OF DRUGS.

Section I

General Introduction

About drugs used in present work.

Studies in partial molar volume.

Introduction

Theoretical

Viscosity Studies

Theoretical

Methods of Viscosity Measurements

Ostwald method.

Jones Dole Equation.

Thomas equation.

Moulik equation.

Experimental.

Ultrasonic Velocimetry

Theoretical

Experimental

Time domain reflectometry

Introduction

Materials and method.
Basic TDR principle
Data Analysis

Section II
Results and discussion of Partial molar volume.

Section III
Results and discussion of viscosity study.

Section IV
Results and discussion of Ultrasonic Velocimetry.

Section V
Results and discussion of Time domain reflectometry.

References

CHAPTER-II

BINARY COMPLEXES.

Section I
Introduction.
Metal chelates of oxygen, nitrogen and sulphur containing ligands.
Metal chelates.
Study of metal chelates in Solution
Factors influencing stabilities of Complexes in Solution.
Experimental methods of measurements of stability constant of metal chelate.
Applications of stability constants.
Aim of the present work.

Section II
Mathematical details
Methods of determination of stability constants.

Determination of stability constants.

Calculation of \bar{n}_A and \bar{n} values.

Calculation of pL

Calculation of proton-ligand stability constant.

Calculations of $\log K_1$ and $\log K_2$

Precision and accuracy of the experimental results.

Limitation of Calvin-Bjerrum titration technique.

Experimental details

Solvents and chemicals.

Standardisation of glass wares.

Digital pH-meter.

Maintenance of glass electrode.

Maintenance of inert atmosphere.

Calvin-Bjerrum titration.

References

CHAPTER III RESULTS AND DISCUSSION

Section I pH metric study of binary complexes of transition metal ions with Drugs.
Calculation of proton-ligand stability constant of drugs

Calculation of proton-ligand stability constant of Drugs from experimental data.
Half integral method.
Method of point wise calculations.
Calculation of metal ligand stability constants from experimental data.
Formation of complexes or chelate.
Formation constants of metal ligand complexes.
Formation curve.
Half integral method.
Point wise calculations.
Method of least squares.
Pattern of potentiometric titration curves.
Accuracy of stability constant values.
Discussion of results.
Metal-ligand stability constants of transition metal ions.
Effect of ligand basicity.
Effect of metal ion.
Crystal field stabilization energy of
Co(II), Ni(II) and Cu(II) complexes of drugs.
Chelate effect.

Section II
pH metric study of binary complexes of lanthanide ions with Drugs.
Rare earth complexes
Results and discussion.
Validity of $\log K = a_p + b$ relation.
Tetrad effect.
References

CHAPTER IV
MIXED LIGAND COMPLEXES.

Section I
Introduction.
Literature survey.
Factors controlling the formation and stability of ternary complexes.

Section II
General methods for the study of mixed ligand complexes.
Experimental details.
Primary analysis to prove the formation of mixed ligand complex.
Mathematical Calculations of stability constant of ternary complex.
Calculation of stability constant of the
ternary complexes using computer
program "SCOGS".
Computational procedure.

Section III Results and discussion.
Simple binary systems.
Mixed ligand systems.
Some relationships between equilibrium
constants of mixed ligand complexes.
Distribution of complex species with pH.
Results of computer calculations.
Stability constants of ternary systems.
References