CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i - iv</td>
</tr>
<tr>
<td>PUBLICATIONS</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi - xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii - xiv</td>
</tr>
<tr>
<td>Chapter 1</td>
<td></td>
</tr>
<tr>
<td>Introduction</td>
<td>1.1</td>
</tr>
<tr>
<td>Chapter 2</td>
<td></td>
</tr>
<tr>
<td>Literature Survey</td>
<td>2.1</td>
</tr>
<tr>
<td>2.1 History and Occurrence</td>
<td>2.1</td>
</tr>
<tr>
<td>2.2 Properties of Boron</td>
<td>2.2</td>
</tr>
<tr>
<td>2.3 Metal - Boron Phase Diagrams</td>
<td>2.4</td>
</tr>
<tr>
<td>2.4 Methods of Preparation of Borides</td>
<td>2.5</td>
</tr>
<tr>
<td>2.5 Diffusion and Solubility of Boron in Iron and Steel</td>
<td>2.6</td>
</tr>
<tr>
<td>2.6 Methods of Boriding</td>
<td>2.8</td>
</tr>
<tr>
<td>2.6.1 Powder Pack Method</td>
<td>2.8</td>
</tr>
<tr>
<td>2.6.2 Paste Method</td>
<td>2.18</td>
</tr>
<tr>
<td>2.6.3 Fused Salt Boronizing - Electroless</td>
<td>2.20</td>
</tr>
<tr>
<td>2.6.4 Fused Salt Boronizing - Electrolytic Method</td>
<td>2.24</td>
</tr>
<tr>
<td>2.6.5 Gaseous Boronising</td>
<td>2.31</td>
</tr>
<tr>
<td>2.6.6 Plasma Boriding</td>
<td>2.35</td>
</tr>
</tbody>
</table>
2.7 Special Techniques of Boriding

2.7.1 Hardfacing
2.7.2 Laser Boronising
2.7.3 Super Plastic Boronising
2.7.4 Multi Component Coatings
 2.7.4.1 Carburising and Boriding
 2.7.4.2 Boro-Aluminising
 2.7.4.3 Boro-Chromising
 2.7.4.4 Boro Chrome Titanising
 2.7.4.5 Boro-Siliconising
 2.7.4.6 Electrolytic Deposition

2.8 Effect of Variables on Morphology, Microstructure and Properties

2.8.1 Morphology, Microstructure and Effect of Composition
 2.8.1.1 Effect of Carbon
 2.8.1.2 Effect of Alloying Elements
 2.8.1.3 Region Below the Boride Layer
 2.8.1.4 Reactivity between the Substrate and Boriding Medium
 2.8.1.5 Temperature
 2.8.1.6 Time
2.8.2. Mechanical and Chemical Properties 2.53
2.8.2.1 Microhardness and Tensile Properties 2.53
2.8.2.2 Fatigue and Corrosion Fatigue 2.54
2.8.2.3 Oxidation Resistance 2.56
2.8.2.4 Residual Stresses 2.57
2.8.2.5 Friction and Wear Characteristics of Borided Layers 2.60

Chapter 3
Scope of the Investigation 3.1

Chapter 4
Experimental Details 4.1
4.1 Equipment 4.1
4.1.1 Furnaces 4.1
4.1.2 Calibration of the Furnace 4.1
4.1.3 Furnace Atmosphere 4.2
4.1.4 Rectifier 4.2
4.1.5 Boriding Containers 4.2
4.2 Boriding Chemicals 4.3
4.2.1 Composition of the Chemicals 4.3
4.2.2 Boriding Chemicals-Preparation 4.4
4.3 Materials (Alloys) for Boriding 4.4
4.3.1 Composition 4.4

Some Refinements to Boriding Processes
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.2 Specimen Preparation for Bonding</td>
<td>4.4</td>
</tr>
<tr>
<td>4.4 Boriding Processes</td>
<td>4.5</td>
</tr>
<tr>
<td>4.4.1 Pack Boriding</td>
<td>4.5</td>
</tr>
<tr>
<td>4.4.1.1 Optimisation of Process Parameters</td>
<td>4.7</td>
</tr>
<tr>
<td>4.4.2 Pack Boriding - Interrupted Process</td>
<td>4.7</td>
</tr>
<tr>
<td>4.4.3 Molten Salt (Electroless) Boriding</td>
<td>4.8</td>
</tr>
<tr>
<td>4.4.3.1 Optimisation of Process Parameters</td>
<td>4.8</td>
</tr>
<tr>
<td>4.4.4 Molten Salt (Electroless) Boriding - Interrupted</td>
<td>4.9</td>
</tr>
<tr>
<td>4.4.5 Molten Salt (Electrolytic) Boriding</td>
<td>4.9</td>
</tr>
<tr>
<td>4.4.6 Kinetic Study</td>
<td>4.10</td>
</tr>
<tr>
<td>4.5 Structural Studies</td>
<td>4.11</td>
</tr>
<tr>
<td>4.5.1 Optical Microscopy</td>
<td>4.11</td>
</tr>
<tr>
<td>4.5.1.1 Case Thickness Measurements</td>
<td>4.12</td>
</tr>
<tr>
<td>4.5.2 Scanning Electron Microscopy</td>
<td>4.12</td>
</tr>
<tr>
<td>4.5.3 X-Ray Diffraction</td>
<td>4.12</td>
</tr>
<tr>
<td>4.5.4 EPMA</td>
<td>4.12</td>
</tr>
<tr>
<td>4.6 Evaluation of Mechanical Properties</td>
<td>4.12</td>
</tr>
<tr>
<td>4.6.1 Microhardness Measurements</td>
<td>4.12</td>
</tr>
<tr>
<td>4.6.2 Tension Test</td>
<td>4.13</td>
</tr>
<tr>
<td>4.6.3 Wear Tests</td>
<td>4.13</td>
</tr>
<tr>
<td>4.6.3.1 Pin On Disc - Adhesive Wear Tests</td>
<td>4.13</td>
</tr>
<tr>
<td>4.6.3.2 Falex (Faville Levally) Test</td>
<td>4.13</td>
</tr>
<tr>
<td>4.7 Evaluation of Corrosion Resistance</td>
<td>4.15</td>
</tr>
<tr>
<td>4.8 Surface Roughness Measurement</td>
<td>4.16</td>
</tr>
</tbody>
</table>

Some Refinements to Boriding Processes
Chapter 5

Results and Discussions 5.1

5.1 Pack Boriding 5.1.1

5.1.1 Boron Carbide + Ammonium Chloride Mixture 5.1.1

5.1.2 Ferro-Boron + Ammonium Chloride Mixture 5.1.1

5.1.3 B4C + KBF4 + SiC Based Process 5.1.2

5.1.4 Ferro-Boron + KBF4 + SiC Based Process 5.1.3

5.1.4.1 Effect Of Na2CO3 5.1.3

5.1.4.2 Effect of Al2O3 5.1.4

5.1.4.3 Effect of KBF4 5.1.4

5.2 Molten Salt (Electroless) Method 5.2.1

5.2.1 Mixture Using Boric Acid and Aluminium 5.2.1

5.2.2 Mixture Using Borax and Boron Carbide 5.2.1

5.2.3 Mixture Using Borax and Ferro Boron 5.2.1

5.2.4 Molten Salt Boriding Using Borax and Boric Acid Based Melts and Ferro Silicon Magnesium 5.2.2

5.3 Electrolytic Boriding 5.3.1

5.3.1 Effect of Electrolyte Composition 5.3.1

5.3.2 Effect of Cathodic Current Density, Temperature and Time 5.3.1

5.3.3 Optimisation of Process Parameters to Get a Single Phase Microstructure 5.3.8

Some Refinements to Boriding Processes
5.4 Kinetic Study

5.4.1 Ferroboron Based Pack Boriding Process

5.4.2 Kinetic Study on Molten Salt Boriding Process

5.5 Interrupted Boriding

5.5.1 Microstructural Observations

5.5.2 X-Ray Diffraction

5.5.3 SEM

5.5.4 Microhardness

5.5.5 Mechanical Properties

5.5.6 Wear Test Data

5.5.7 Corrosion

Chapter 6

Conclusions and Suggestions for Future Work

6.1 Conclusions

6.2 Suggestions for Future Work

Bibliography

APPENDICES

Calibration Chart of the Thermocouple

Composition of the Chemicals

Cost of the Chemicals

XRD Data (2θ vs phases present)