TABLE OF CONTENTS

Chapter 1 : INTRODUCTION 1.1

Chapter 2 : LITERATURE SURVEY 2.1

2.1. Awareness of Reclamation and Development in Chronological Order 2.1

2.1.1. Past Literature 2.1

2.1.2. Need Felt for Reclamation 2.4

2.1.3. Historical Developments for Sand Reclamation over a Decade 2.8

2.2. CO₂ / Sodium Silicate Moulding 2.12

2.2.1. CO₂ / Silicate Process – The Current State of the Art 2.12

2.2.2. Nature of the Silicate Bond 2.12

2.2.3. Silicate Bonded Sands during Heating and Subsequent Cooling Properties at High Temperature 2.16

2.2.4. Maximum Strength Vs Mesh Size 2.18

2.2.5. Gassing Time and Pressure Relationship 2.19

2.2.6. Summary of CO₂ / Sodium Silicate Moulding 2.26

2.2.7. Gassing Technique 2.27

2.2.7.1. Gassing Procedure 2.28

2.2.7.2. Types of Gassing 2.28

2.2.8. Effect of External and Internal Variables in the Sodium Silicate Process 2.30

2.2.8.1. Sodium Silicate 2.30

2.2.8.2. Hardening Processes of Sodium Silicate Sands CO₂ Process 2.30

2.2.8.2.1. Time Dependence 2.31

2.2.8.2.2. CO₂ Flow Rate 2.31
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.8.2.3. Temperature Change during CO₂ Gassing</td>
<td>2.31</td>
</tr>
<tr>
<td>2.2.8.3. The Development of Bond Strength in the CO₂ - Silicate Process</td>
<td>2.32</td>
</tr>
<tr>
<td>2.2.8.4. Three Classes of Sodium Silicate Binder are in use with the CO₂ Process</td>
<td>2.32</td>
</tr>
<tr>
<td>2.2.8.4.1. Low Ratio Sodium Silicate Binders</td>
<td>2.32</td>
</tr>
<tr>
<td>2.2.8.4.2. High Ratio Sodium Silicate Binders</td>
<td>2.33</td>
</tr>
<tr>
<td>2.2.8.4.3. Proprietary Sodium Silicates</td>
<td>2.33</td>
</tr>
<tr>
<td>2.2.8.5. Sodium Silicate Ester Cured Systems</td>
<td>2.34</td>
</tr>
<tr>
<td>2.2.8.6. Ferro-Silicon or Calcium Silicide (Nishiyama Process)</td>
<td>2.35</td>
</tr>
<tr>
<td>2.2.8.7. Cement / Dicalcium Silicate Process</td>
<td>2.35</td>
</tr>
</tbody>
</table>

2.3. Types of Reclamation

- 2.3.1. Wet Methods 2.38
- 2.3.2. Pneumatic Methods 2.43
- 2.3.3. Dry Mulling Plus Aeration 2.47
- 2.3.4. Shot Blast Secondary Method of Reclamation 2.47
- 2.3.5. Mechanical ‘Crushing’ and Regrading Plants 2.47
- 2.3.6. Thermal Reclamation 2.48

2.4. CO₂ / Silicate Sand Reclamation

- 2.4.1. Using Dry Reclaimed CO₂ Process Sand 2.54
- 2.4.2. Chemical Reclamation of CO₂ Sand 2.57
- 2.4.3. Progress of Reclamation of Sodium Silicate Bonded Sand over the Years 2.62
- 2.4.4. Economical – Environmental – Technical 2.66
2.5. Fluidization

- **2.5.1. The Phenomenon of Fluidization** 2.68
- **2.5.2. Liquidlike Behaviour of a Fluidized Bed** 2.71
- **2.5.3. Comparison with other Contacting Methods** 2.72
- **2.5.4. Advantages of Fluidized Beds** 2.74
- **2.5.5. Comparison of Types of Contacting for Reacting Gas Solids Systems in Fluidized Bed** 2.76
 - **2.5.5.1. Solid Catalyzed Gas Phase Reaction** 2.76
 - **2.5.5.2. Gas Solid Reaction** 2.76
 - **2.5.5.3. Temperature Distribution in the Bed** 2.76
 - **2.5.5.4. Particles** 2.77
 - **2.5.5.5. Pressure Drop** 2.77
 - **2.5.5.6. Heat Exchange and Transport of Heat** 2.77
 - **2.5.5.7. Conversion** 2.77
- **2.5.6. Industrial Applications of Fluidized Beds - Historical Highlights** 2.77
- **2.5.7. Calcination** 2.80
- **2.5.8. Roasting** 2.81
- **2.5.9. Fixed Beds – Solids with a Distribution of Sizes** 2.82
- **2.5.10. Choice of Distributor Type** 2.87
- **2.5.11. Gas Fluidized Beds** 2.93
- **2.5.12. Heat Transfer between Fluidized Beds and Surfaces** 2.95
- **2.5.13. Variables affecting the Heat Transfer Rate** 2.98
- **2.5.14. Continuous Operations** 2.100
 - **2.5.14.1. Heat Transfer in Continuous Stream** 2.100
- **2.5.15. Drying of Solids** 2.103
2.5.16. Wide Size Distribution of Solids 2.105
2.5.17. Non-Catalytic Gas-Phase Reactions 2.105

2.6. **Scrubbing** 2.108

2.6.1. Scrubber 2.109
2.6.2. Internal Function of Scrubber 2.111
2.6.3. Other Varieties of Scrubber 2.112

2.7. **Calcining** 2.115

2.7.1. Fluid Bed Calciner Designs 2.115

2.8. **Sand Characteristics** 2.117

2.8.1. Constitution of Sands and Clays in Relation to their Origin 2.117
2.8.2. The Mineralogy of Sands 2.117
2.8.3. Shape of Sand Grains 2.118
 2.8.3.1. Profile 2.118
 2.8.3.2. Rounded Grains 2.118
 2.8.3.3. Sub-angular Grains 2.118
 2.8.3.4. Angular Grains 2.118
 2.8.3.5. Compound Grains 2.119
 2.8.3.6. Specific Surface 2.119
2.8.4. Example of Factors for Calculation of Actual Specific Surface 2.121
2.8.5. Angularity Curves 2.123
2.8.6. The Preparation of Moulding Sands 2.123
2.8.7. The Milling of a Moulding Sand 2.125
2.8.8. The Optimum Moisture Content in a Sand Mix 2.125
2.8.9. The Shaping of the Sand 2.127
2.8.10. Bulk Density Distribution in Relation to Moulding Technique 2.129
2.8.11. Bulk Density Distribution in Relation to Moulding Sand Characteristics 2.134
2.8.12. The Strength of Moulding Sands 2.135
2.8.13. The Relation of the Grain Shape to the Strength of the Sand 2.139
2.8.14. The Dry Strength Characteristics of Clay Bonds 2.139
2.8.15. Surface Texture 2.142
2.8.16. Thermal Conductivity 2.144
2.8.17. The Characteristics of High-Silica Sands in Relation to their Moulding Properties 2.144

2.9. Sand Tests 2.145
 2.9.1. Moisture 2.145
 2.9.2. Green Permeability 2.145
 2.9.3. Dry Permeability 2.146
 2.9.4. Plastic Properties of Sand 2.146
 2.9.5. Composition of Regenerated Sand 2.147
 2.9.6. Fines Removal from Moulding Sand 2.147
 2.9.7. Improved Magnetic Separation of Used Sand 2.148

2.10. Behavior of Silica 2.149
 2.10.1. Stable and Unstable Structures 2.149
 2.10.2. Change in Structures during Heating and Cooling 2.150
 2.10.3. Expansion and Spalling 2.152

Chapter 3 : SCOPE 3.1
Chapter 4 : EXPERIMENTAL WORK 4.1

4.1. Introduction 4.1
4.2. **Key Terms**

4.2.1. Combination Method of Reclamation 4.3

4.2.2. Fluidization 4.3

4.2.3. Fluidized Bed 4.3

4.2.4. Gassing 4.3

4.2.5. New Sand (Fresh Sand) 4.4

4.2.6. Reclamation 4.4

4.2.7. Recovery 4.4

4.2.8. Regeneration Cycle 4.4

4.2.9. Scrubbing 4.4

4.2.10. System Sand 4.4

4.2.11. Used Sand 4.5

4.3. **Reclamation of CO$_2$/Sodium Silicate Sand** 4.5

4.3.1. Fluidized Bed 4.5

4.3.2. Scrubber 4.11

4.3.3. Carbon-dioxide Sand Reclamation Unit 4.15

4.3.4. Effluents 4.19

4.4. **Experimental Items** 4.19

4.5. **Test Procedures for Characterization of Sand** 4.20

4.5.1. Shape of Sand Grains 4.23

4.5.2. pH 4.23

4.5.3. AFS Number 4.23

4.5.4. ADV 4.24

4.5.5. Na$_2$O Content 4.25

4.5.6. Total Clay Content 4.26
4.5.7. Permeability 4.27
4.5.8. Water Absorption 4.27
4.5.9. Compactability 4.28
4.5.10. Mould Hardness 4.28
4.5.11. L.O.I. 4.29
4.5.12. Compressive Strength 4.29
4.5.13. Test Castings 4.29
 4.5.13.1. Step Cone Casting 4.30
 4.5.13.2. SFSA Test Block 4.30
 4.5.14.1. Moulding 4.33
 4.5.14.2. Pouring 4.33
 4.5.14.3. Knock out and Shot Blast 4.33

4.6. Reclamation Trials 4.33

Chapter 5 : RESULTS AND DISCUSSIONS 5.1

5.1. Introduction 5.1

5.2. Test Results for Characterization of Sand 5.3
 5.2.1. Shape of the Sand Grains 5.3
 5.2.1.1. Coating Characteristics 5.5
 5.2.2. pH 5.7
 5.2.3. AFS Number 5.9
 5.2.4. ADV (Acid Demand Value) 5.11
 5.2.5. Na₂O Content 5.13
 5.2.6. Total Clay Content 5.15
 5.2.7. Permeability 5.18
5.2.8. Water Absorption 5.20
5.2.9. Compactability 5.23
5.2.10. Mould Hardness 5.26
5.2.11. L.O.I. 5.28
5.2.12. Compression Strength 5.30
5.2.13. Test Casting 5.32
 5.2.13.1. Surface Inspection by Comparison Method 5.32

5.3. Results of Reclamation Trials 5.40
5.3.1. By Varying the Inlet Pressure 5.40
5.3.2. By Varying the Temperature in Fluidized Bed 5.42
5.3.3. By Varying the Time of CO₂ Gas passing during Moulding 5.44
5.3.4. By Varying the Percentage of Binder while preparing the Mould 5.45
5.3.5. By Direct Scrubbing 5.46
5.3.6. By Varying Sand Retention Time in Fluidized Bed 5.48
5.3.7. By Varying the Pressure of CO₂ Gas during Moulding 5.50
5.3.8. By Varying the Sand Retention Time in the Scrubber 5.51
5.3.9. Reclamation of CO₂ / Sodium Silicate Sand before and after Pouring 5.52
5.3.10. Shape / Profile of the Sand 5.54
 5.3.10.1. Evaluation of Sand by Metallographic Photographs 5.55

5.4. Inference 5.83

5.5. Merits 5.83
 5.5.1. Advantageous 5.83
 5.5.1.1. Fluidized bed – Superior System 5.83

XX
5.5.1.2. Scrubbing cell - Effective Performance 5.84
5.5.2. Special Features of our Process 5.84
 5.5.2.1. Controlled Conditioning 5.84
 5.5.2.2. Non-Pollution Atmosphere 5.84

5.6. Cost Analysis 5.85

Chapter 6: CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 6.1

 6.1. Conclusions 6.1
 6.2. Basic Requirements Fulfilled 6.4
 6.3. The Future 6.4
 6.3.1. Sustainable Waste Management 6.4
 6.3.2. No Health Hazards 6.4
 6.3.3. Economical Viability 6.5
 6.3.4. Suggestions for Safety Features 6.5

BIBLIOGRAPHY B.1

ANNEXURES

 Annexure – I A.1
 Annexure – II A.7
 Annexure – III A.10