LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Flow chart for achieving self compacting concrete mix</td>
<td>5</td>
</tr>
<tr>
<td>3.1</td>
<td>Compressive strength of concrete mixes with water binder ratio (w/b) ratio of 0.3</td>
<td>46</td>
</tr>
<tr>
<td>3.2</td>
<td>Development of compressive strength of concrete mixes with w/b ratio of 0.3 with age</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>Compressive strength of concrete mixes with w/b ratio of 0.35 at various ages</td>
<td>48</td>
</tr>
<tr>
<td>3.4</td>
<td>Development of compressive strength of concrete mixes with w/b ratio of 0.35 with age</td>
<td>49</td>
</tr>
<tr>
<td>3.5</td>
<td>Compressive strength of concrete mixes and with w/b ratio of 0.4 at various ages</td>
<td>50</td>
</tr>
<tr>
<td>3.6</td>
<td>Development of compressive strength of concrete mixes with w/b ratio of 0.4 with age</td>
<td>51</td>
</tr>
<tr>
<td>3.7</td>
<td>Effect of w/b ratio on compressive strength of normal concrete mixes at different ages</td>
<td>56</td>
</tr>
<tr>
<td>3.8</td>
<td>Effect of w/b ratio on compressive strength of 5% silica fume concrete mixes at different ages</td>
<td>57</td>
</tr>
<tr>
<td>3.9</td>
<td>Effect of w/b ratio on compressive strength of 10% silica fume concrete mixes at different ages</td>
<td>57</td>
</tr>
<tr>
<td>3.10</td>
<td>Effect of w/b ratio on compressive strength of 15% silica fume concrete mixes at different ages</td>
<td>58</td>
</tr>
<tr>
<td>3.11</td>
<td>Effect of w/b ratio on compressive strength of 5% metakaolin concrete mixes at different ages</td>
<td>58</td>
</tr>
</tbody>
</table>
3.12 Effect of w/b ratio on compressive strength of 10% metakaolin concrete mixes at different ages 59
3.13 Effect of w/b ratio on compressive strength of 15% metakaolin concrete mixes at different ages 59
3.14 Effect of w/b ratio on compressive strength of 5% fly ash concrete mixes at different ages 60
3.15 Effect of w/b ratio on compressive strength of 10% fly ash concrete mixes at different ages 60
3.16 Effect of w/b ratio on compressive strength of 15% fly ash concrete mixes at different ages 61
3.17 Effect of w/b ratio on compressive strength of 20% fly ash concrete mixes at different ages 61
3.18 Effect of w/b ratio on tensile strength of concrete mixes 64
3.19 Relationship between compressive strength and tensile strength of concrete mixes 65
3.20 Flexural failure of the specimen 66
3.21 Effect of w/b ratio on flexural strength of concrete mixes 67
3.22 Relationship between compressive strength and flexural strength of concrete mixes 68
4.1 View of the water permeability test set up 73
4.2 Accelerated corrosion test set up 74
4.3 Schematic illustration of the shrinkage test set up 76
4.4 View of Schrader drop weight impact test set up 80
4.5 Length comparator with mortar bar specimen for drying shrinkage and alkali silica reaction test 81
4.6 Permeability coefficient of concrete mixes with mineral admixtures at different replacement levels at 28 days

4.7 View of corroded specimens of normal concrete and concrete with silica fume, metakaolin and fly ash

4.8 Plastic shrinkage crack patterns of concrete specimens

4.9 Reduction of crack width with fiber content for concrete mixes with and without mineral admixtures at 45°C

4.10 Reduction of crack width with fiber content for concrete mixes with and without mineral admixtures at 52°C

4.11 Crack reduction with fiber content for concrete mixes with different type of mineral admixtures at 45°C

4.12 Crack reduction with fiber content for concrete mixes with different type of mineral Admixtures at 52°C

4.13 Reduction of crack area with fiber content for concrete mixes with and without mineral admixtures at 45°C

4.14 Reduction of crack area with fiber content for concrete mixes with and without mineral admixtures at 52°C

4.15 Drying shrinkage of mortar bar with of mineral admixtures for Series I

4.16 Drying shrinkage of mortar bar with mineral admixtures for Series II

4.17 Rate of drying shrinkage with age for Series I mortar mixes

4.18 Rate of drying shrinkage with age for series II mortar mixes

4.19 Failed specimens due to impact load

4.20 Impact strength of normal concrete for first crack and failure at 28 days

4.21 Impact strength of concrete with and without mineral admixture for first crack at 28 days
4.22 Impact strength of concrete with and without mineral admixtures for failure at 28 days 102

4.23 Improvement of impact strength of concrete with fiber content with mineral admixtures at 28 days for first crack 103

4.24 Improvement of impact strength of concrete with fiber content with mineral admixtures at 28 days for first failure 104

4.25 Expansion of mortar bars with various contents of mineral admixtures due to alkali silica reaction at different ages 109

4.26 Rate of percentage of expansion due to alkali silica reaction with age for mortar bar specimens incorporated with mineral admixtures 110

5.1 Cost of superplasticizer and cement with water content 119

5.2 Comparison of efficiency factor for different replacement levels of mineral admixtures at 7 and 28 days 123

5.3 Efficiency factor for different replacement levels of mineral admixtures at 7 and 28 days 124

5.4 Comparison of efficiency factor between silica fume and metakaolin at different replacement levels at 7 days 125

5.5 Comparison of efficiency factor between silica fume and metakaolin at different replacement levels at 28 days 125

5.6 Comparison between experimental values and predicted values of compressive strength for HPC with silica fume 126

5.7 Comparison between experimental values and predicted values of compressive strength for HPC with metakaolin 126

5.8 Comparison between experimental values and predicted values of compressive strength for HPC with fly ash 127

5.9 Relationship between compressive strength and tensile Strength 128
7.7 Load – deflection plot for high performance concrete mixes with fly ash and glass fibers

7.8 Crack patterns of normal concrete with 0%, 0.5%, 1.0% and 1.5% glass fibers after failure

7.9 Crack patterns of silica fume concrete with 0%, 0.5%, 1.0% and 1.5% glass fibers after failure

7.10 Crack patterns of metakaolin concrete with 0%, 0.5%, 1.0% and 1.5% glass fibers after failure

7.11 Crack patterns of fly ash concrete with 0%, 0.5%, 1.0% and 1.5% glass fibers after failure

7.12 Longitudinal section of the beam initially

7.13 Deflection pattern of the beam at 1.144 kN

7.14 Deflection pattern of the beam at 5.72 kN

7.15 Deflection pattern of the beam at 10.296 kN

7.16 Deflection pattern of the beam at 13.728 kN

7.17 Deflection pattern of the beam at 17.16 kN

7.18 Deflection pattern of the beam at 22.88 kN