LIST OF FIGURES

1.1 Block diagram for the analysis of respiratory system .. 5
2.1 Schematic representation of the respiratory system .. 8
2.2 Lung volumes and capacities - a diagrammatic representation 14
3.1 The perceptron ... 21
3.2 Architecture of a multilayer perceptron network .. 22
3.3 Comparison of the training algorithms with reference to the number of epochs 31
3.4 Comparison of the training algorithms with reference to the training duration 32
4.1 Optimisation using GA .. 43
4.2 Comparison of measured and simulated MEFV curves .. 44
5.1 Schematic of the classification method .. 52
5.2 Window regions of STFT and WT analyses .. 58
5.3 Subband decomposition of DWT implementation; $h[n]$ is the high pass filter, $g[n]$ the low pass filter .. 60
5.4 Lung sound signal: (a) with noise, and (b) after denoising; (c) and (d) are the time expanded representations of (a) and (b) respectively. .. 62
5.5 Comparison of classification efficiencies using different wavelets 68
5.6 Comparison of the performances of training algorithms ... 71
6.1 Change in breathing flow shape at increasing levels of exercise. Along the X-axis is time in seconds, and Y-axis is flow in litres/min. Negative side of Y-axis indicates inspiratory flow. Scale of Y-axis-(a)1:40, (b)1:120, and (c)1:160 ... 76
6.2 Sequence of events translating muscle activation into ventilation, and the factors involved in each step .. 78
6.3 Laboratory set-up for exercise study .. 83
6.4 Comparison of theoretical breathing rates with experimental values for subject S.R. .. 84
6.5 Comparison of theoretical breathing rates with experimental values for subject V.K. .. 85
6.6 Variation of work rate with breathing rate .. 86
6.7 Work done per inspiratory cycle .. 87