CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>CERTIFICATE</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td></td>
<td>LIST OF SYMBOLS</td>
<td>xx</td>
</tr>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 NEED FOR THE PRESENT STUDY</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 THE AIMS OF THE PRESENT INVESTIGATION</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.3 SCOPE OF THE PRESENT INVESTIGATION</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>LITERATURE REVIEW</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.1 LITERATURE REVIEW ON ANALYSIS OF SLAB AND YIELD LINE THEORY</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.1.1 Yield Line Theory</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>2.1.2 Membrane Analysis</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2.1.3 Lower Bound Solution</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>2.1.4 Strip Method</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2.1.5 Serviceability Problems and Deflections</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>2.1.6. Slabs Subjected to Punching Shear/ Concentrated Load</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2.1.7 Slabs with Opening</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.2 LITERATURE REVIEW ON STRENGTHENING OF SLABS</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.3 LITERATURE REVIEW ON FINITE ELEMENT ANALYSIS OF SLABS</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.4 CONCLUSION</td>
<td>18</td>
</tr>
</tbody>
</table>
3. ULTIMATE LOAD ANALYSIS OF RC SLAB

3.1 INTRODUCTION

3.2 YIELD-LINE THEORY

3.2.1 Virtual Work Method

3.2.2 Development of Virtual Work Equation

3.3 FORMULATION OF WORK EQUATION FOR SLAB WITH OPENING AND SUBJECTED TO UNIFORMELY DISTRIBUTED LOAD

3.3.1 Derivation of Virtual Work Equation for a Slab with an Opening Inside the Slab

3.3.2 Derivation of Virtual Work Equation for Slab with Opening at Corner

3.3.3 Derivation of Virtual Work Equation for a Rectangular Slab with Opening Tangential to a Shorter Edge.

3.3.4 Derivation of Virtual Work Equation for a Slab with Opening Tangential to a Longer Edge

3.4 EVALUATION OF THE MINIMUM ULTIMATE LOAD VALUE

3.4.1 Validation of the Virtual Work Equations Developed

3.5 NUMERICAL EXAMPLE PROBLEMS FOR SLABS SUBJECTED TO UNIFORMELY DISTRIBUTED LOAD

3.5.1 Rectangular Slab with Non-central Opening and Subjected to UDL

3.5.2 Rectangular Slab with Opening at a Corner and Subjected to UDL

3.5.3 Rectangular slab with Opening along Shorter Direction and Subjected to UDL

3.5.4 Rectangular Slab with Opening along Longer Direction and Subjected to UDL

3.6 FORMULATION OF VIRTUAL WORK EQUATION FOR SLABS WITH AN OPENING AND SUBJECTED TO A CONCENTRATED LOAD

3.6.1 Derivation of Work Equation for Slab with an Opening at Corner and Subjected to Concentrated Load

3.6.2 Derivation of Virtual Work Equation for Slab with an Opening along Shorter Direction and Subjected to Concentrated Load

3.6.3 Derivation of Virtual Work Equation for Slab with an Opening along Longer Direction and Subjected to Concentrated Load

3.7 NUMERICAL EXAMPLE PROBLEM FOR SLABS SUBJECTED TO CENTRAL CONCENTRATED LOAD

3.7.1 Rectangular Slab with Corner Opening and Subjected to Central Concentrated Load

3.7.2 Rectangular Slab with Opening along edge and Subjected to Central Concentrated Load
4. EXPERIMENTAL WORK

4.1 INTRODUCTION

4.2 MATERIALS AND MIX USED
 4.2.1 Cement
 4.2.2 Fine Aggregate
 4.2.3 Coarse Aggregate
 4.2.4 Water
 4.2.5 Mix Proportion
 4.2.6 Reinforcement

4.3 DESCRIPTION OF THE SPECIMENS
 4.3.1 Details of Square Slabs
 4.3.2 Details of Rectangular Slabs
 4.3.3 Companion Specimens

4.4 CASTING AND CURING OF SPECIMENS
 4.4.1 Preparation of Matrix
 4.4.2 Casting of Slabs
 4.4.3 Casting of Companion Specimens
 4.4.4 Curing of R.C.C Slabs
 4.4.5 Curing of Companion Specimens

4.5 TESTING AND INSTRUMENTATION
 4.5.1 Preparation of Specimen Before Testing
 4.5.2 Loading Frame
 4.5.3 Test Set Up
 4.5.4 Measurement of Load
 4.5.5 Measurement of Deflection
 4.5.6 Marking of First Crack Load
 4.5.7 Marking of Crack Patterns
 4.5.8 Testing of Companion Specimens

5. BEHAVIOUR OF SLABS DURING TESTING

5.1 INTRODUCTION

5.2 SQUARE SLABS WITH AN OPENING AT CENTRE AND SUBJECTED TO UNIFORMLY DISTRIBUTED LOAD

5.3 SQUARE SLABS WITH AN OPENING AT A CORNER AND SUBJECTED TO UNIFORMLY DISTRIBUTED LOAD
5.4 SQUARE SLABS WITH AN OPENING AT MIDDLE AND TANGENTIAL TO AN EDGE AND SUBJECTED TO UNIFORMLY DISTRIBUTED LOAD 92

5.5 SQUARE SLABS WITH AN OPENING ALONG A LINE OF SYMMETRY AND SUBJECTED TO UNIFORMLY DISTRIBUTED LOAD 92

5.6 SQUARE SLABS WITH AN OPENING ALONG A DIAGONAL LINE AND SUBJECTED TO UNIFORMLY DISTRIBUTED LOAD 93

5.7 SQUARE SLABS WITH AN OPENING AT A CORNER AND SUBJECTED TO CENTRAL CONCENTRATED LOAD 94

5.8 SQUARE SLABS WITH AN OPENING AT MIDDLE AND TANGENTIAL TO AN EDGE AND SUBJECTED TO CENTRAL CONCENTRATED LOAD 94

5.9 RECTANGULAR SLABS WITH AN OPENING AT VARIOUS POSITIONS 95

5.9.1 Rectangular Slabs with Non-Central Opening (U11) and subjected to u.d.l 95

5.9.2 Rectangular Slabs with Opening at a Corner (UC3) and subjected to u.d.l 95

5.9.3 Rectangular Slabs with Opening Tangential to a Shorter Edge (UE1) and subjected to u.d.l 95

5.9.4 Rectangular Slabs with Opening Tangential to a Longer Edge (UE2) and subjected to u.d.l 96

5.9.5 Rectangular Slabs with Opening at Various Positions and Subjected to Central Concentrated Load 96

5.10 CONCLUSION 96

6. COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL LOADS 134

6.1 INTRODUCTION 134

6.2 THEORETICAL FAILURE LOAD OF SLABS WITH OPENING AND SUBJECTED TO UNIFORMLY DISTRIBUTED LOAD 134

6.3 THEORETICAL FAILURE LOAD OF SLABS WITH OPENING AND SUBJECTED TO CONCENTRATED LOAD 139

6.4 COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL ULTIMATE LOADS FOR SQUARE SLABS WITH OPENING AND SUBJECTED TO UNIFORMLY DISTRIBUTED LOAD 140

6.4.1 Square Slab with Opening at Center and Subjected to UDL 140

6.4.2 Square Slabs with Opening at a Corner and Subjected to UDL 140

6.4.3 Square Slabs with Opening at Middle and Tangential to an edge and Subjected to UDL 141

6.4.5 Square Slabs with Opening along a Line of Symmetry and subjected to UDL 141

6.4.6 Square Slabs with Opening along a Diagonal Line and Subjected to UDL 141

6.5 COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL ULTIMATE LOADS FOR SQUARE SLABS WITH OPENING AND SUBJECTED TO CENTRAL CONCENTRATED LOAD 142
6.5.1 Square Slabs with Square Opening at a Corner and Subjected to Central Concentrated Load. 142
6.5.2 Square Slabs with Square Opening at Middle and Tangential to an Edge and Subjected to Central Concentrated Load. 142
6.6 COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL ULTIMATE LOADS OF RECTANGULAR SLABS WITH OPENING AT VARIOUS POSITIONS AND SUBJECTED TO UNIFORMLY DISTRIBUTED LOAD 142
6.7 COMPARISON BETWEEN THEORETICAL AND EXPERIMENTAL ULTIMATE LOADS OF RECTANGULAR SLABS SUBJECTED TO CENTRAL CONCENTRATED LOAD 143
6.8 CONCLUSION 143

7. FINDINGS ON THE STRENGTHENING OF SLABS AROUND OPENINGS 157
7.1 INTRODUCTION 157
7.2 DETAILS OF THE SPECIMENS 157
7.3 EXPERIMENTAL SETUP AND TESTING 158
7.4 GENERAL BEHAVIOUR OF THE STRENGTHENED SLABS 158
7.5 COMPARISON BETWEEN FAILURE LOADS OF STRENGTHENED AND UN-STRENGTHENED SLABS 158
 7.5.1 slabs with opening at center 158
 7.5.2 slabs with opening at a corner 159
 7.5.3 slabs with opening at middle and tangential to an edge 159
 7.5.4 slabs with opening along a line of symmetry 159
 7.5.5 slabs with opening along a diagonal line 159
7.6 CONCLUSION 160

8. FINITE ELEMENT MODELLING OF SLABS 173
8.1 INTRODUCTION 173
8.2 ELEMENT SELECTION 173
8.3 ELEMENT PROPERTY 174
8.4 CONVERGENCE STUDY 174
8.5 MODELING OF SLABS 174
8.6 FE ANALYSIS 175
8.7 CONCLUSION 175

9. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 187
9.1 CONCLUSIONS BASED ON THE EXPERIMENTAL WORK 187
9.2 DEVELOPMENT OF MATHEMATICAL MODEL TO PREDICT THE ULTIMATE LOAD CARRYING CAPACITY OF THE SLABS 187
9.3 COMPARISON OF THEORETICAL VALUES WITH EXPERIMENTAL RESULTS 187
9.4 DEVELOPMENT OF FINITE ELEMENT MODEL TO PREDICT THE PRE-CRACKING DEFLECTIONS 188
9.5 STRENGTHENING OF SLABS 188
9.6 SUGGESTION FOR FURTHER WORK 188

REFERENCES 190
PUBLICATIONS 197
APPENDIX-A