LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 4.1</td>
<td>Plan View of Environmental Chamber</td>
<td>34</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Schematic Illustration of the Shrinkage Test Setup</td>
<td>35</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Er Vs Ac for Mixes M1, M2 & M3 with w/c Ratio = 0.50</td>
<td>57</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Er Vs Ac for Mixes M1, M2 & M3 with w/c Ratio = 0.55</td>
<td>57</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Er Vs Ac for Mixes M1, M2 & M3 with w/c Ratio = 0.60</td>
<td>58</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Er Vs Wmax for Mixes M1, M2 & M3 with w/c Ratio = 0.50</td>
<td>59</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Er Vs Wmax for Mixes M1, M2 & M3 with w/c Ratio = 0.55</td>
<td>59</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Er Vs Wmax for Mixes M1, M2 & M3 with w/c Ratio = 0.60</td>
<td>60</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>C/TA Ratio Vs Ac for w/c Ratio = 0.50</td>
<td>62</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>C/TA Ratio Vs Ac for w/c Ratio = 0.55</td>
<td>62</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>C/TA Ratio Vs Ac for w/c Ratio = 0.60</td>
<td>63</td>
</tr>
<tr>
<td>Figure 5.10</td>
<td>C/TA Ratio Vs Wmax for w/c Ratio = 0.50</td>
<td>64</td>
</tr>
<tr>
<td>Figure 5.11</td>
<td>C/TA Ratio Vs Wmax for w/c Ratio = 0.55</td>
<td>64</td>
</tr>
<tr>
<td>Figure 5.12</td>
<td>C/TA Ratio Vs Wmax for w/c Ratio = 0.60</td>
<td>65</td>
</tr>
<tr>
<td>Figure 5.13</td>
<td>w/c Ratio Vs Ac for Er = A</td>
<td>66</td>
</tr>
<tr>
<td>Figure 5.14</td>
<td>w/c Ratio Vs Ac for Er = B</td>
<td>67</td>
</tr>
<tr>
<td>Figure 5.15</td>
<td>w/c Ratio Vs Ac for Er = C</td>
<td>67</td>
</tr>
<tr>
<td>Figure 5.16</td>
<td>w/c Ratio Vs Ac for Er = D</td>
<td>68</td>
</tr>
<tr>
<td>Figure 5.17</td>
<td>w/c Ratio Vs Wmax for Er = A</td>
<td>69</td>
</tr>
<tr>
<td>Figure 5.18</td>
<td>w/c Ratio Vs Wmax for Er = B</td>
<td>69</td>
</tr>
<tr>
<td>Figure 5.19</td>
<td>w/c Ratio Vs Wmax for Er = C</td>
<td>70</td>
</tr>
<tr>
<td>Figure 5.20</td>
<td>w/c Ratio Vs Wmax for Er = D</td>
<td>70</td>
</tr>
<tr>
<td>Figure 5.21</td>
<td>Vf Vs Ac for Mix = M1, Er = A</td>
<td>72</td>
</tr>
<tr>
<td>Figure 5.22</td>
<td>Vf Vs Ac for Mix = M1, Er = B</td>
<td>73</td>
</tr>
<tr>
<td>Figure 5.23</td>
<td>Vf Vs Ac for Mix = M1, Er = C</td>
<td>73</td>
</tr>
<tr>
<td>Figure 5.24</td>
<td>Vf Vs Ac for Mix = M1, Er = D</td>
<td>74</td>
</tr>
<tr>
<td>Figure 5.25</td>
<td>Vf Vs Ac for Mix = M2, Er = A</td>
<td>74</td>
</tr>
<tr>
<td>Figure 5.26</td>
<td>Vf Vs Ac for Mix = M2, Er = B</td>
<td>75</td>
</tr>
<tr>
<td>Figure 5.27</td>
<td>Vf Vs Ac for Mix = M2, Er = C</td>
<td>75</td>
</tr>
<tr>
<td>Figure 5.28</td>
<td>Vf Vs Ac for Mix = M2, Er = D</td>
<td>76</td>
</tr>
<tr>
<td>Figure 5.29</td>
<td>Vf Vs Ac for Mix = M3, Er = A</td>
<td>76</td>
</tr>
</tbody>
</table>
Figure 5.30 Vf Vs Ac for Mix = M3, Er = B
Figure 5.31 Vf Vs Ac for Mix = M3, Er = C
Figure 5.32 Vf Vs Ac for Mix = M3, Er = D
Figure 5.33 Vf Vs Wmax for Mix = M1, Er = A
Figure 5.34 Vf Vs Wmax for Mix = M1, Er = B
Figure 5.35 Vf Vs Wmax for Mix = M1, Er = C
Figure 5.36 Vf Vs Wmax for Mix = M1, Er = D
Figure 5.37 Vf Vs Wmax for Mix = M2, Er = A
Figure 5.38 Vf Vs Wmax for Mix = M2, Er = B
Figure 5.39 Vf Vs Wmax for Mix = M2, Er = C
Figure 5.40 Vf Vs Wmax for Mix = M2, Er = D
Figure 5.41 Vf Vs Wmax for Mix = M3, Er = A
Figure 5.42 Vf Vs Wmax for Mix = M3, Er = B
Figure 5.43 Vf Vs Wmax for Mix = M3, Er = C
Figure 5.44 Vf Vs Wmax for Mix = M3, Er = D
Figure 5.45 Ar Vs Ac for Mix = M1, Er = A
Figure 5.46 Ar Vs Ac for Mix = M1, Er = B
Figure 5.47 Ar Vs Ac for Mix = M1, Er = C
Figure 5.48 Ar Vs Ac for Mix = M1, Er = D
Figure 5.49 Ar Vs Ac for Mix = M2, Er = A
Figure 5.50 Ar Vs Ac for Mix = M2, Er = B
Figure 5.51 Ar Vs Ac for Mix = M2, Er = C
Figure 5.52 Ar Vs Ac for Mix = M2, Er = D
Figure 5.53 Ar Vs Ac for Mix = M3, Er = A
Figure 5.54 Ar Vs Ac for Mix = M3, Er = B
Figure 5.55 Ar Vs Ac for Mix = M3, Er = C
Figure 5.56 Ar Vs Ac for Mix = M3, Er = D
Figure 5.57 Ar Vs Wmax for Mix = M1, Er = A
Figure 5.58 Ar Vs Wmax for Mix = M1, Er = B
Figure 5.59 Ar Vs Wmax for Mix = M1, Er = C
Figure 5.60 Ar Vs Wmax for Mix = M1, Er = D
Figure 5.61 Ar Vs Wmax for Mix = M2, Er = A
Figure 5.62 Ar Vs Wmax for Mix = M2, Er = B
Figure 5.63 Ar Vs Wmax for Mix = M2, Er = C

xviii
Figure 5.64 Ar Vs Wmax for Mix = M2, Er = D
Figure 5.65 Ar Vs Wmax for Mix = M3, Er = A
Figure 5.66 Ar Vs Wmax for Mix = M3, Er = B
Figure 5.67 Ar Vs Wmax for Mix = M3, Er = C
Figure 5.68 Ar Vs Wmax for Mix = M3, Er = D
Figure 5.69 N Vs Ac for Er = A, B, C & D and Mix = M1
Figure 5.70 N Vs Ac for Er = A, B, C & D and Mix = M2
Figure 5.71 N Vs Ac for Er = A, B, C & D and Mix = M3
Figure 5.72 N Vs Wmax for Er = A, B, C & D and Mix = M1
Figure 5.73 N Vs Wmax for Er = A, B, C & D and Mix = M2
Figure 5.74 N Vs Wmax for Er = A, B, C & D and Mix = M3
Figure 5.75 Sf Vs Ac for Er = A, B, C & D and Mix = M1
Figure 5.76 Sf Vs Ac for Er = A, B, C & D and Mix = M2
Figure 5.77 Sf Vs Ac for Er = A, B, C & D and Mix = M3
Figure 5.78 Sf Vs Wmax for Er = A, B, C & D and Mix = M1
Figure 5.79 Sf Vs Wmax for Er = A, B, C & D and Mix = M2
Figure 5.80 Sf Vs Wmax for Er = A, B, C & D and Mix = M3
Figure 6.1 C/TA Vs % Ac for Er = 0.10 kg/m²/h.
Figure 6.2 C/TA Vs % Ac for Er = 0.20 kg/m²/h.
Figure 6.3 C/TA Vs % Ac for Er = 0.30 kg/m²/h.
Figure 6.4 C/TA Vs % Ac for Er = 0.40 kg/m²/h.
Figure 6.5 C/TA Vs % Ac for Er = 0.50 kg/m²/h.
Figure 6.6 C/TA Vs % Ac for Er = 0.60 kg/m²/h.
Figure 6.7 C/TA Vs % Ac for Er = 0.70 kg/m²/h.
Figure 6.8 C/TA Vs % Ac for Er = 0.80 kg/m²/h.
Figure 6.9 C/TA Vs % Ac for Er = 0.90 kg/m²/h.
Figure 6.10 C/TA Vs Wmax for Er = 0.10 kg/m²/h.
Figure 6.11 C/TA Vs Wmax for Er = 0.20 kg/m²/h.
Figure 6.12 C/TA Vs Wmax for Er = 0.30 kg/m²/h.
Figure 6.13 C/TA Vs Wmax for Er = 0.40 kg/m²/h.
Figure 6.14 C/TA Vs Wmax for Er = 0.50 kg/m²/h.
Figure 6.15 C/TA Vs Wmax for Er = 0.60 kg/m²/h.
Figure 6.16 C/TA Vs Wmax for Er = 0.70 kg/m²/h.
Figure 6.17 C/TA Vs Wmax for Er = 0.80 kg/m²/h.
Figure 6.18 C/TA Vs Wmax for Er = 0.90 kg/m²/h. 134
Figure 6.19 SF Vs %Ac for C/TA = 0.10 140
Figure 6.20 SF Vs %Ac for C/TA = 0.20 141
Figure 6.21 SF Vs %Ac for C/TA = 0.30 142
Figure 6.22 SF Vs %Ac for C/TA = 0.40 143
Figure 6.23 SF Vs %Ac for C/TA = 0.50 144
Figure 6.24 SF Vs %Ac for C/TA = 0.60 145
Figure 6.25 SF Vs %Ac for C/TA = 0.70 147
Figure 6.26 SF Vs %Ac for C/TA = 0.80 148
Figure 6.27 SF Vs %Ac for C/TA = 0.90 149
Figure 6.28 SF Vs Wmax for C/TA = 0.10 155
Figure 6.29 SF Vs Wmax for C/TA = 0.20 156
Figure 6.30 SF Vs Wmax for C/TA = 0.30 157
Figure 6.31 SF Vs Wmax for C/TA = 0.40 158
Figure 6.32 SF Vs Wmax for C/TA = 0.50 159
Figure 6.33 SF Vs Wmax for C/TA = 0.60 160
Figure 6.34 SF Vs Wmax for C/TA = 0.70 161
Figure 6.35 SF Vs Wmax for C/TA = 0.80 162
Figure 6.36 SF Vs Wmax for C/TA = 0.90 164
Figure A.1 Free Surface Water Evaporation Chart 238