<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Schematic diagram of the experimental setup.</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Variation of hydraulic conductivity of unstabilized compacted fly ash matrix for different curing period at OMC<sub>dry</sub>.</td>
<td>46</td>
</tr>
<tr>
<td>4.2</td>
<td>Variation of hydraulic conductivity of unstabilized compacted fly ash matrix for different curing period at OMC.</td>
<td>47</td>
</tr>
<tr>
<td>4.3</td>
<td>Variation of hydraulic conductivity of bentonite stabilized compacted fly ash matrices, 7 days curing at OMC<sub>dry</sub>.</td>
<td>49</td>
</tr>
<tr>
<td>4.4</td>
<td>Variation of hydraulic conductivity of bentonite stabilized compacted fly ash matrices, 7 days curing at OMC.</td>
<td>50</td>
</tr>
<tr>
<td>4.5</td>
<td>Variation of hydraulic conductivity of bentonite stabilized compacted fly ash matrices, 14 days curing at OMC<sub>dry</sub>.</td>
<td>50</td>
</tr>
<tr>
<td>4.6</td>
<td>Variation of hydraulic conductivity of bentonite stabilized compacted fly ash matrices, 14 days curing at OMC.</td>
<td>51</td>
</tr>
<tr>
<td>4.7</td>
<td>Variation of hydraulic conductivity of bentonite stabilized compacted fly ash matrices, 28 days curing at OMC<sub>dry</sub>.</td>
<td>51</td>
</tr>
<tr>
<td>4.8</td>
<td>Variation of hydraulic conductivity of bentonite stabilized compacted fly ash matrices, 28 days curing at OMC.</td>
<td>52</td>
</tr>
<tr>
<td>4.9</td>
<td>Variation of hydraulic conductivity of cement stabilized compacted fly ash matrices, 7 days curing at OMC<sub>dry</sub>.</td>
<td>54</td>
</tr>
<tr>
<td>4.10</td>
<td>Variation of hydraulic conductivity of cement stabilized compacted fly ash matrices, 7 days curing at OMC.</td>
<td>55</td>
</tr>
<tr>
<td>4.11</td>
<td>Variation of hydraulic conductivity of cement stabilized compacted fly ash matrices, 14 days curing at OMC<sub>dry</sub>.</td>
<td>55</td>
</tr>
<tr>
<td>4.12</td>
<td>Variation of hydraulic conductivity of cement stabilized compacted fly ash matrices, 14 days curing at OMC.</td>
<td>56</td>
</tr>
<tr>
<td>4.13</td>
<td>Variation of hydraulic conductivity of cement stabilized compacted fly ash matrices, 28 days curing at OMC<sub>dry</sub>.</td>
<td>56</td>
</tr>
</tbody>
</table>
4.14. Variation of hydraulic conductivity of cement stabilized compacted fly ash matrices, 28 days curing at OMC. 57

4.15. Variation of hydraulic conductivity of bentonite-cement stabilized compacted fly ash matrices, 7 days curing at OMC_{dry}. 59

4.16. Variation of hydraulic conductivity of bentonite-cement stabilized compacted fly ash matrices, 7 days curing at OMC. 60

4.17. Variation of hydraulic conductivity of bentonite-cement stabilized compacted fly ash matrices, 14 days curing at OMC_{dry}. 60

4.18. Variation of hydraulic conductivity of bentonite-cement stabilized compacted fly ash matrices, 14 days curing at OMC. 61

4.19. Variation of hydraulic conductivity of bentonite-cement stabilized compacted fly ash matrices, 28 days curing at OMC_{dry}. 61

4.20. Variation of hydraulic conductivity of bentonite-cement stabilized compacted fly ash matrices, 28 days curing at OMC. 62

4.21. Variation of mean hydraulic conductivity for different bentonite matrices for different curing period at OMC_{dry}. 63

4.22. Variation of mean hydraulic conductivity for different bentonite matrices for different curing period at OMC. 64

4.23. Variation of mean hydraulic conductivity for different cement matrices for different curing period at OMC_{dry}. 64

4.24. Variation of mean hydraulic conductivity for different cement matrices for different curing period at OMC. 65

4.25. Variation of mean hydraulic conductivity for different bentonite-cement matrices for different curing period at OMC_{dry}. 65

4.26. Variation of mean hydraulic conductivity for different bentonite-cement matrices for different curing period at OMC. 66

4.27. Variation of mean hydraulic conductivity for different fly ash matrices for different MWC at 7 days curing. 66

4.28. Variation of mean hydraulic conductivity for different fly ash matrices for different MWC at 14 days curing. 67

4.29. Variation of mean hydraulic conductivity for different fly ash matrices for different MWC at 28 days curing. 67

4.30. Variation of hydraulic conductivity for RF+10B matrix for different MWC at 7 days curing. 68
4.31. Variation of hydraulic conductivity for RF+12B matrix for different MWC at 7 days curing. 69
4.32. Variation of hydraulic conductivity for RF+15B matrix for different MWC at 7 days curing. 69
4.33. Variation of hydraulic conductivity for RF+10B matrix for different MWC at 14 days curing. 70
4.34. Variation of hydraulic conductivity for RF+12B matrix for different MWC at 14 days curing. 70
4.35. Variation of hydraulic conductivity for RF+15B matrix for different MWC at 14 days curing. 71
4.36. Variation of hydraulic conductivity for RF+10B matrix for different MWC at 28 days curing. 71
4.37. Variation of hydraulic conductivity for RF+12B matrix for different MWC at 28 days curing. 72
4.38. Variation of hydraulic conductivity for RF+15B matrix for different MWC at 28 days curing. 72
4.39. Variation of mean hydraulic conductivity for different bentonite matrices for different curing periods at OMC\textsubscript{dry} 73
4.40. Variation of mean hydraulic conductivity for different bentonite matrices for different curing periods at OMC. 73
4.41. Variation of hydraulic conductivity for RF+6C matrix for different MWC at 7 days curing. 74
4.42. Variation of hydraulic conductivity for RF+8C matrix for different MWC at 7 days curing. 75
4.43. Variation of hydraulic conductivity for RF+10C matrix for different MWC at 7 days curing. 75
4.44. Variation of hydraulic conductivity for RF+6C matrix for different MWC at 14 days curing. 76
4.45. Variation of hydraulic conductivity for RF+8C matrix for different MWC at 14 days curing. 76
4.46. Variation of hydraulic conductivity for RF+10C matrix for different MWC at 14 days curing. 77
4.47. Variation of hydraulic conductivity for RF+6C matrix for different MWC at 28 days curing. 77
4.48. Variation of hydraulic conductivity for RF+8C matrix for different MWC at 28 days curing. 78
4.49. Variation of hydraulic conductivity for RF+10C matrix for different MWC at 28 days curing. 78
4.50. Variation of mean hydraulic conductivity for different cement Matrices for different curing periods at OMC_{dry}. 79
4.51. Variation of mean hydraulic conductivity for different cement Matrices for different curing periods at OMC. 79
4.52. Variation of hydraulic conductivity for RF+10B+4C matrix for different MWC at 7 days curing. 81
4.53. Variation of hydraulic conductivity for RF+12B+4C matrix for different MWC at 7 days curing. 81
4.54. Variation of hydraulic conductivity for RF+15B+4C matrix for different MWC at 7 days curing. 82
4.55. Variation of hydraulic conductivity for RF+10B+4C matrix for different MWC at 14 days curing. 82
4.56. Variation of hydraulic conductivity for RF+12B+4C matrix for different MWC at 14 days curing. 83
4.57. Variation of hydraulic conductivity for RF+15B+4C matrix for different MWC at 14 days curing. 83
4.58. Variation of hydraulic conductivity for RF+10B+4C matrix for different MWC at 28 days curing. 84
4.59. Variation of hydraulic conductivity for RF+12B+4C matrix for different MWC at 28 days curing. 84
4.60. Variation of hydraulic conductivity for RF+15B+4C matrix for different MWC at 28 days curing. 85
4.61. Variation of mean hydraulic conductivity for different bentonite-cement matrices for different curing periods at OMC_{dry}. 85
4.62. Variation of mean hydraulic conductivity for different bentonite-cement matrices for different curing periods at OMC. 86
4.63. Variation of mean hydraulic conductivity ratios for different fly ash matrices for different curing period at OMC_{dry}. 91
4.64. Variation of mean hydraulic conductivity ratios for different fly ash matrices for different curing period at OMC.

5.1. Concentration of Chromium in leachates of different fly ash matrices, 7 days curing at different MWC.

5.2. Concentration of Chromium in leachates of different fly ash matrices, 14 days curing at different MWC.

5.3. Concentration of Chromium in leachates of different fly ash matrices, 28 days curing at different MWC.

5.4. Concentration of Copper in leachates of different fly ash matrices, 7 days curing at different MWC.

5.5. Concentration of Copper in leachates of different fly ash matrices, 14 days curing at different MWC.

5.6. Concentration of Copper in leachates of different fly ash matrices, 28 days curing at different MWC.

5.7. Concentration of Iron in leachates of different fly ash matrices, 7 days curing at different MWC.

5.8. Concentration of Iron in leachates of different fly ash matrices, 14 days curing at different MWC.

5.9. Concentration of Iron in leachates of different fly ash matrices, 28 days curing at different MWC.

5.10. Concentration of Lead in leachates of different fly ash matrices, 7 days curing at different MWC.

5.11. Concentration of Lead in leachates of different fly ash matrices, 14 days curing at different MWC.

5.12. Concentration of Lead in leachates of different fly ash matrices, 28 days curing at different MWC.

5.13. Concentration of Manganese in leachates of different fly ash matrices, 7 days curing at different MWC.

5.14. Concentration of Manganese in leachates of different fly ash matrices, 14 days curing at different MWC.

5.15. Concentration of Manganese in leachates of different fly ash matrices, 28 days curing at different MWC.
5.16. Concentration of Nickel in leachates of different fly ash matrices, 7 days curing at different MWC. 129
5.17. Concentration of Nickel in leachates of different fly ash matrices, 14 days curing at different MWC. 129
5.18. Concentration of Nickel in leachates of different fly ash matrices, 28 days curing at different MWC. 130
5.19. Concentration of Zinc in leachates of different fly ash matrices, 7 days curing at different MWC. 134
5.20. Concentration of Zinc in leachates of different fly ash matrices, 14 days curing at different MWC. 134
5.21. Concentration of Zinc in leachates of different fly ash matrices, 28 days curing at different MWC. 135
6.1. Variation of leachate load ratio, different metals, different curing period at OMC for RF+10B matrix. 144
6.2. Variation of leachate load ratio, different metals, different curing period at \text{OMC}_{\text{dry}} for RF+10B matrix. 144
6.3. Variation of leachate load ratio, different metals, different curing period at OMC for RF+12B matrix. 145
6.4. Variation of leachate load ratio, different metals, different curing period at \text{OMC}_{\text{dry}} for RF+12B matrix. 145
6.5. Variation of leachate load ratio, different metals, different curing period at OMC for RF+15B matrix. 146
6.6. Variation of leachate load ratio, different metals, different curing period at \text{OMC}_{\text{dry}} for RF+15B matrix. 146
6.7. Variation of leachate load ratio, different metals, different curing period at OMC for RF+6C matrix. 147
6.8. Variation of leachate load ratio, different metals, different curing period at \text{OMC}_{\text{dry}} for RF+6C matrix. 148
6.9. Variation of leachate load ratio, different metals, different curing period at OMC for RF+8C matrix. 148
6.10. Variation of leachate load ratio, different metals, different curing period at \text{OMC}_{\text{dry}} for RF+8C matrix. 149
6.11. Variation of leachate load ratio, different metals, different curing period at OMC for RF+10C matrix. 149
xxii
6.12. Variation of leachate load ratio, different metals, different curing period at OMC_{dry} for RF+10C matrix. 150

6.13. Variation of leachate load ratio, different metals, different curing period at OMC for RF+10B+4C matrix. 151

6.14. Variation of leachate load ratio, different metals, different curing period at OMC_{dry} for RF+10B+4C matrix. 151

6.15. Variation of leachate load ratio, different metals, different curing period at OMC for RF+12B+4C matrix. 152

6.16. Variation of leachate load ratio, different metals, different curing period at OMC_{dry} for RF+12B+4C matrix. 152

6.17. Variation of leachate load ratio, different metals, different curing period at OMC for RF+15B+4C matrix. 153

6.18. Variation of leachate load ratio, different metals, different curing period at OMC_{dry} for RF+15B+4C matrix. 153