LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.</td>
<td>Physical properties of TTPS fly ash.</td>
<td>36</td>
</tr>
<tr>
<td>3.2.</td>
<td>Chemical composition of TTPS fly ash.</td>
<td>36</td>
</tr>
<tr>
<td>3.3.</td>
<td>Properties of Bentonite.</td>
<td>37</td>
</tr>
<tr>
<td>3.4.</td>
<td>Chemical composition of portland cement.</td>
<td>38</td>
</tr>
<tr>
<td>3.5.</td>
<td>Chemical characteristics of water used.</td>
<td>38</td>
</tr>
<tr>
<td>4.1.</td>
<td>Hydraulic conductivity of unstabilized compacted fly ash matrix RF.</td>
<td>46</td>
</tr>
<tr>
<td>4.2.</td>
<td>Hydraulic conductivity for bentonite stabilized compacted fly ash matrices at 7 days curing.</td>
<td>48</td>
</tr>
<tr>
<td>4.3.</td>
<td>Hydraulic conductivity for bentonite stabilized compacted fly ash matrices at 14 days curing.</td>
<td>48</td>
</tr>
<tr>
<td>4.4.</td>
<td>Hydraulic conductivity for bentonite stabilized compacted fly ash matrices at 28 days curing.</td>
<td>49</td>
</tr>
<tr>
<td>4.5.</td>
<td>Hydraulic conductivity for cement stabilized compacted fly ash matrices at 7 days curing.</td>
<td>53</td>
</tr>
<tr>
<td>4.6.</td>
<td>Hydraulic conductivity for cement stabilized compacted fly ash matrices at 14 days curing.</td>
<td>53</td>
</tr>
<tr>
<td>4.7.</td>
<td>Hydraulic conductivity for cement stabilized compacted fly ash matrices at 28 days curing.</td>
<td>54</td>
</tr>
<tr>
<td>4.8.</td>
<td>Hydraulic conductivity for bentonite-cement stabilized compacted fly ash matrices at 7 days curing.</td>
<td>58</td>
</tr>
<tr>
<td>4.9.</td>
<td>Hydraulic conductivity for bentonite-cement stabilized compacted fly ash matrices at 14 days curing.</td>
<td>58</td>
</tr>
<tr>
<td>4.10.</td>
<td>Hydraulic conductivity for bentonite-cement stabilized compacted fly ash matrices at 28 days curing.</td>
<td>59</td>
</tr>
<tr>
<td>4.11.</td>
<td>Mean hydraulic conductivity for different stabilized fly ash matrices, different curing period at OMC<sub>dry</sub> & OMC.</td>
<td>63</td>
</tr>
</tbody>
</table>
4.12. Hydraulic conductivity ratio for different fly ash matrices. 90

5.1. pH values of fly ash matrices. 94

5.2. Concentration of heavy metals in water used. 95

5.3. Allowable and threshold limits for concentration of metals. 96

5.4. Concentration of metals in leachates of unstabilized compacted fly ash matrix, 7 days curing at OMC_{dry}. 97

5.5. Concentration of metals in leachates of unstabilized compacted fly ash matrix, 7 days curing at OMC. 97

5.6. Concentration of metals in leachates of unstabilized compacted fly ash matrix, 14 days curing at OMC_{dry}. 98

5.7. Concentration of metals in leachates of unstabilized compacted fly ash matrix, 14 days curing at OMC. 98

5.8. Concentration of metals in leachates of unstabilized compacted fly ash matrix, 28 days curing at OMC_{dry}. 99

5.9. Concentration of metals in leachates of unstabilized compacted fly ash matrix, 28 days curing at OMC. 99

5.10. Concentration of Chromium in leachates of stabilized matrices, 7 days curing at OMC_{dry}. 101

5.11. Concentration of Chromium in leachates of stabilized matrices, 7 days curing at OMC. 101

5.12. Concentration of Chromium in leachates of stabilized matrices, 14 days curing at OMC_{dry}. 102

5.13. Concentration of Chromium in leachates of stabilized matrices, 14 days curing at OMC. 102

5.14. Concentration of Chromium in leachates of stabilized matrices, 28 days curing at OMC_{dry}. 103

5.15. Concentration of Chromium in leachates of stabilized matrices, 28 days curing at OMC. 103

5.16. Concentration of Copper in leachates of stabilized matrices, 7 days curing at OMC_{dry}. 106

5.17. Concentration of Copper in leachates of stabilized matrices, 7 days curing at OMC. 106
5.18. Concentration of Copper in leachates of stabilized matrices,
14 days curing at OMC\textsubscript{dry}. 107

5.19. Concentration of Copper in leachates of stabilized matrices,
14 days curing at OMC. 107

5.20. Concentration of Copper in leachates of stabilized matrices,
28 days curing at OMC\textsubscript{dry}. 108

5.21. Concentration of Copper in leachates of stabilized matrices,
28 days curing at OMC. 108

5.22. Concentration of Iron in leachates of stabilized matrices,
7 days curing at OMC\textsubscript{dry}. 111

5.23. Concentration of Iron in leachates of stabilized matrices,
7 days curing at OMC. 111

5.24. Concentration of Iron in leachates of stabilized matrices,
14 days curing at OMC\textsubscript{dry}. 112

5.25. Concentration of Iron in leachates of stabilized matrices,
14 days curing at OMC. 112

5.26. Concentration of Iron in leachates of stabilized matrices,
28 days curing at OMC\textsubscript{dry}. 113

5.27. Concentration of Iron in leachates of stabilized matrices,
28 days curing at OMC. 113

5.28. Concentration of Lead in leachates of stabilized matrices,
7 days curing at OMC\textsubscript{dry}. 116

5.29. Concentration of Lead in leachates of stabilized matrices,
7 days curing at OMC. 116

5.30. Concentration of Lead in leachates of stabilized matrices,
14 days curing at OMC\textsubscript{dry}. 117

5.31. Concentration of Lead in leachates of stabilized matrices,
14 days curing at OMC. 117

5.32. Concentration of Lead in leachates of stabilized matrices,
28 days curing at OMC\textsubscript{dry}. 118

5.33. Concentration of Lead in leachates of stabilized matrices,
28 days curing at OMC. 118

5.34. Concentration of Manganese in leachates of stabilized matrices,
7 days curing at OMC\textsubscript{dry}. 121
5.35. Concentration of Manganese in leachates of stabilized matrices, 7 days curing at OMC.

5.36. Concentration of Manganese in leachates of stabilized matrices, 14 days curing at OMC
dry.

5.37. Concentration of Manganese in leachates of stabilized matrices, 14 days curing at OMC.

5.38. Concentration of Manganese in leachates of stabilized matrices, 28 days curing at OMC
dry.

5.39. Concentration of Manganese in leachates of stabilized matrices, 28 days curing at OMC.

5.40. Concentration of Nickel in leachates of stabilized matrices, 7 days curing at OMC
dry.

5.41. Concentration of Nickel in leachates of stabilized matrices, 7 days curing at OMC.

5.42. Concentration of Nickel in leachates of stabilized matrices, 14 days curing at OMC
dry.

5.43. Concentration of Nickel in leachates of stabilized matrices, 14 days curing at OMC.

5.44. Concentration of Nickel in leachates of stabilized matrices, 28 days curing at OMC
dry.

5.45. Concentration of Nickel in leachates of stabilized matrices, 28 days curing at OMC.

5.46. Concentration of Zinc in leachates of stabilized matrices, 7 days curing at OMC
dry.

5.47. Concentration of Zinc in leachates of stabilized matrices, 7 days curing at OMC.

5.48. Concentration of Zinc in leachates of stabilized matrices, 14 days curing at OMC
dry.

5.49. Concentration of Zinc in leachates of stabilized matrices, 14 days curing at OMC.

5.50. Concentration of Zinc in leachates of stabilized matrices, 28 days curing at OMC
dry.

5.51. Concentration of Zinc in leachates of stabilized matrices, 28 days curing at OMC.
5.52. Leachate concentration ratio for bentonite stabilized fly ash matrices at OMCdry. 136

5.53. Leachate concentration ratio for bentonite stabilized fly ash matrices at OMC. 136

5.54. Leachate concentration ratio for cement stabilized fly ash matrices at OMCdry. 137

5.55. Leachate concentration ratio for cement stabilized fly ash matrices at OMC. 137

5.56. Leachate concentration ratio for bentonite-cement stabilized fly ash matrices at OMCdry. 138

5.57. Leachate concentration ratio for bentonite-cement stabilized fly ash matrices at OMC. 138

6.1. Leachate load ratio for different stabilized fly ash matrices at OMCdry. 142

6.2. Leachate load ratio for different stabilized fly ash matrices at OMC. 143