LIST OF NOTATIONS

\{ \} = Column vector

\langle \rangle = Row vector

\[\] = Matrix

\frac{d(\cdot)}{d(\cdot)} = Denotes a differentiation of the numerator with respect to the denominator

\frac{\partial(\cdot)}{\partial(\cdot)} = Denotes a partial differentiation of the numerator with respect to the denominator

\alpha = Material constant

a_o = Coefficient in Alexander's Stress Strain Curve

a_o, a_1, a_2 = Coefficients relating to minor radius of ultimate strength surface

a_o, a_1, ... a_6 = Coefficients in Newmark's method

A = Area or area per unit length or area per unit width

b_o, b_1, b_2 = Coefficients relating to major radius of ultimate strength surface

[B] = Strain displacement matrix

B_{ij} = Coefficients of matrix in Eq. 3.7
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c)</td>
<td>Material constant</td>
</tr>
<tr>
<td>([C])</td>
<td>Constitutive matrix or damping matrix in dynamic analysis</td>
</tr>
<tr>
<td>(d)</td>
<td>Differential element</td>
</tr>
<tr>
<td>(dA)</td>
<td>Elemental area</td>
</tr>
<tr>
<td>(db_1, db_2)</td>
<td>Elements of vector forming sides of element area</td>
</tr>
<tr>
<td>(dr_1, dr_2)</td>
<td>radial and horizontal components of the vectors (db_1, db_2)</td>
</tr>
<tr>
<td>(dV)</td>
<td>Elemental volume</td>
</tr>
<tr>
<td>([D])</td>
<td>Constitutive matrix</td>
</tr>
<tr>
<td>([D_{ep}])</td>
<td>Elasto-plastic matrix</td>
</tr>
<tr>
<td>(E)</td>
<td>Modulus of elasticity</td>
</tr>
<tr>
<td>(E_i)</td>
<td>Effective Young's modulus in direction 'i'</td>
</tr>
<tr>
<td>(E_{oi})</td>
<td>Initial Young's modulus</td>
</tr>
<tr>
<td>(E_{si})</td>
<td>Secant modulus</td>
</tr>
<tr>
<td>(f_{1,2,3,4})</td>
<td>Functions</td>
</tr>
<tr>
<td>(f_{cb})</td>
<td>Biaxial compressive strength</td>
</tr>
<tr>
<td>(f'_c)</td>
<td>Uniaxial compressive strength</td>
</tr>
</tbody>
</table>
\[f_i \quad = \quad \text{uniaxial tensile strength} \]
\[F_i \quad = \quad \text{Body force} \]
\[F_s \quad = \quad \text{Spring force in boundary element} \]
\[g \quad = \quad \text{Coefficient in Alexander's stress strain curve} \]
\[G \quad = \quad \text{Shear modulus} \]
\[G^c \quad = \quad \text{Cracked shear modulus} \]
\[I_1 \quad = \quad \text{First invariant of stress tensor} \]
\[J'_1 \quad = \quad \text{First invariant of strain tensor} \]
\[[J] \quad = \quad \text{Jacobian matrix} \]
\[||J|| \quad = \quad \text{Jacobian determinant} \]
\[J_2 \quad = \quad \text{Second invariant of deviatoric stress tensor} \]
\[J'_2 \quad = \quad \text{Second invariant of deviatoric strain tensor} \]
\[K \quad = \quad \text{Bulk modulus or number of elements in a body} \]
\[h_k \quad = \quad \text{Shell thickness at node 'k'} \]
\[[K] \quad = \quad \text{Tangent stiffness matrix} \]
\[l \quad = \quad \text{Length} \]
\[[M] \quad = \quad \text{Mass matrix} \]
\[M_x, M_y, M_{xy} \quad = \quad \text{Bending moments} \]

\[m \quad = \quad \text{Material constant} \]

\[[N] \quad = \quad \text{Shape function matrix} \]

\[N \quad = \quad \text{Number of subin increments} \]

\[N_x \quad = \quad \text{Normal force} \]

\[\{P\} \quad = \quad \text{Equilibrating force resulting from integration of stresses over volume} \]

\[q_i \quad = \quad \text{Displacement} \]

\[\dot{q}_i \quad = \quad \text{Velocity} \]

\[\ddot{q}_i \quad = \quad \text{Acceleration} \]

\[Q \quad = \quad \text{Equilibrating force resulting from integration of stresses over volume} \]

\[\Delta Q^i \quad = \quad \text{Unbalanced loads at load step 'i'} \]

\[r \quad = \quad \text{Radius of deviatoric trace of the ultimate strength surface or horizontal co-ordinate or radius} \]

\[r_c, r_t \quad = \quad \text{Compressive and tensile radii of the deviatoric trace of the ultimate strength surface} \]

\[R \quad = \quad \text{Loads} \]

\[\Delta R^i \quad = \quad \text{Load increment in load step 'i'} \]

\[S_{ij} \quad = \quad \text{Deviatoric stress tensor} \]

xxxiv
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>Surface</td>
</tr>
<tr>
<td>S_q</td>
<td>Surface on which the displacement is specified</td>
</tr>
<tr>
<td>S_σ</td>
<td>Surface on which tractions are prescribed</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>T</td>
<td>Surface force</td>
</tr>
<tr>
<td>u</td>
<td>Displacement in the horizontal direction</td>
</tr>
<tr>
<td>v</td>
<td>Displacement in vertical direction</td>
</tr>
<tr>
<td>V_{ik}</td>
<td>nodal co-ordinate set</td>
</tr>
<tr>
<td>W</td>
<td>Gaussian integration weights</td>
</tr>
<tr>
<td>u,v,w</td>
<td>Displacements in co-ordinate directions</td>
</tr>
<tr>
<td>x,y,z</td>
<td>Co-ordinate set</td>
</tr>
<tr>
<td>X,Y,Z</td>
<td>Co-ordinate axes</td>
</tr>
<tr>
<td>α</td>
<td>Principal stress ratio or a factor or Newmark's integration parameter or tension stiffening parameter</td>
</tr>
<tr>
<td>$\alpha_1, \alpha_2, \alpha_3$</td>
<td>Parameters of descending branch of stress strain curve</td>
</tr>
<tr>
<td>α_c, α_t</td>
<td>Ratios of biaxial compressive and uniaxial tensile strengths to uniaxial compressive strength</td>
</tr>
<tr>
<td>β</td>
<td>Coefficient</td>
</tr>
</tbody>
</table>
β_1, β_2 = Parameters of the descending branch of stress strain curve

γ = Specific weight or shear strain or coefficient in Alexander's stress strain curve

γ_{oct} = Octahedral shear strain

γ_{12} = Shear strain associated with plane 1 & 2

γ_{c12} = Shear strain corresponding to ultimate shear strength on plane 1 & 2

δ = Variation or Newmark's integration parameter

Δ = Increment

ν = Poisson's ratio

ε = Strain

ε_i = Strain in direction 'i'

ε_c = Equivalent uniaxial strain corresponding to ultimate strength

ε_{cu} = Strain corresponding to uniaxial compressive strength

ε_o = Normal octahedral strain

ε_{iu} = Equivalent uniaxial strain

ε_u = Ultimate strain

$d\varepsilon^e, d\varepsilon^p$ = Elastic and plastic strain increments
\(\eta \) = Equivalent Poisson's ratio
\(\theta \) = Angle of similarity or angle of inclination of a reinforcing layer to the horizontal axis
\(\theta_\xi, \theta_\eta \) = Angle of the plane \(\xi \) and \(\eta \) described with respect to the vertical axis
\(d\lambda \) = Proportionality constant in flow rule
\(\lambda \) = Parameter in Willam and Warnke's surface
\(\lambda_q, \lambda_Q \) = Convergence tolerance for displacements and loads respectively
\(\xi, \eta, \zeta \) = Nondimensional co-ordinates
\(\xi_1, \xi_2 \) = Normalised mean normal stresses in compression
\(\xi_o \) = Nondimensional mean normal stress in tension denoting the apex of the ultimate strength surface
\(\mu \) = Coefficient in spiral surface
\(\Gamma \) = Configuration
\(\rho \) = Mass density
\(\rho_1, \rho_2 \) = Nondimensionalised mean shear stresses at nondimensionalised mean normal stresses \(\xi_1 \) and \(\xi_2 \) respectively
\(\omega \) = Natural frequency
\(\sigma \) = Normal stress

\(\sigma_a \) = Mean normal stress

\(\sigma_m \) = Normal stress in ultimate strength surface

\(\sigma_c \) = Ultimate strength

\(\sigma_i \) = Normal stress in direction 'i'

\(\sigma_o \) = Effective stress

\(\tau \) = Shear stress

\(\tau_{oct} \) = Octahedral shear stress

\(\tau_m \) = Shear stress in ultimate strength surface

\(\phi \) = Function of Poisson's ratios

\((_e) \) = Element

\((_m) \) = Order of Gaussian integration

\((_o), (_o) \) = Initial quantities

\([]^T \) = Transpose

\((_\xi), (_\eta) \) = Quantities in directions \(\xi \) and \(\eta \) respectively

\((______) \) = Prescribed quantities

\((_) \) = Nodal quantities