CONTENTS

AKNOWLEDGEMENTS

<table>
<thead>
<tr>
<th>Chapter – I: INTRODUCTION</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Water</td>
<td>1 - 26</td>
</tr>
<tr>
<td>1.2. Ground water in hard rock terrain</td>
<td></td>
</tr>
<tr>
<td>1.3. Executive summary</td>
<td></td>
</tr>
<tr>
<td>1.4. Geographical setup</td>
<td></td>
</tr>
<tr>
<td>1.4.1 Geographic location</td>
<td></td>
</tr>
<tr>
<td>1.4.2 Accessibility</td>
<td></td>
</tr>
<tr>
<td>1.4.3 Topography</td>
<td></td>
</tr>
<tr>
<td>1.4.4 Soil</td>
<td></td>
</tr>
<tr>
<td>1.4.5 Meteorology</td>
<td></td>
</tr>
<tr>
<td>1.5. Review of related literature</td>
<td></td>
</tr>
<tr>
<td>1.6. Basic sources of information</td>
<td></td>
</tr>
<tr>
<td>1.7. Objectives</td>
<td></td>
</tr>
<tr>
<td>1.8. Methodology</td>
<td></td>
</tr>
</tbody>
</table>

Chapter – II: GEOGRAPHICAL INFORMATION SYSTEM & REMOTE SENSING...27 - 46

<table>
<thead>
<tr>
<th>Chapter – II: GEOGRAPHICAL INFORMATION SYSTEM & REMOTE SENSING</th>
<th>27 - 46</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction to GIS domain</td>
<td></td>
</tr>
<tr>
<td>2.1.1 Spatial data format</td>
<td></td>
</tr>
<tr>
<td>2.1.2 Non spatial data format</td>
<td></td>
</tr>
<tr>
<td>2.2 Spatial concepts</td>
<td></td>
</tr>
<tr>
<td>2.3 Contradictory data structure</td>
<td></td>
</tr>
<tr>
<td>2.3.1 Raster data structure</td>
<td></td>
</tr>
<tr>
<td>2.3.2 Vector data structure</td>
<td></td>
</tr>
<tr>
<td>2.3.3 Hierarchical database structure</td>
<td></td>
</tr>
<tr>
<td>2.3.4 Relational database structure</td>
<td></td>
</tr>
<tr>
<td>2.4 Elements of Geographical Information System</td>
<td></td>
</tr>
<tr>
<td>2.4.1 Data acquisition and data input</td>
<td></td>
</tr>
<tr>
<td>2.4.2 Pre-processing</td>
<td></td>
</tr>
</tbody>
</table>
2.4.3 Data management
2.4.4 Manipulation and analysis

2.5 Data conversion and database design
2.6 The use of GIS application in the present study
2.7 Introduction to remote sensing technology

2.8 The use of Remote sensing technology in Present Study
 2.8.1 Un-supervised classification
 2.8.2 Convolution filters
 2.8.3 Non directional edge enhancement

2.9 Land use/land cover pattern

Chapter – III: GEOLOGICAL CONFIGURATION..47 - 66

3.1 Geology of Karnataka
3.2 Geological information of Shivani watershed
 3.2.1 Banded Gneiss
 3.2.2 Conglomerate
 3.2.3 Channagiri Ultramafic-Mafic complex
 3.2.4 Ultramafic enclaves
 3.2.5 Granite (Sensu Lato
 3.2.6 Limestone
 3.2.7 Migmatites and granodioritic to tonalitic gneisses
 3.2.8 Quartzite
 3.2.9 Tonalite
 3.2.10 V-Ti Magnetite

3.3 Lineaments of Shivani watershed

Chapter – IV: HYDRO-GEOMORPHOLOGICAL STUDIES..67 - 103

4.1 Introduction
 4.1.1 General concepts of drainage basin
 4.1.2 Basin hydrology
 4.1.3 Drainage network of Shivani watershed
4.2 Morphometric analysis

4.3 Linear aspects
 4.3.1 Stream order
 4.3.2 Stream number
 4.3.3 Stream length
 4.3.4 Length of overland flow
 4.3.5 Length ratio
 4.3.6 Bifurcation ratio
 4.3.7 Mean stream length

4.4 Areal aspects
 4.4.1 Watershed area and perimeter
 4.4.2 Watershed length and width
 4.4.3 Elongation ratio
 4.4.4 Circularity ratio
 4.4.5 Form factor
 4.4.6 Compactness factor
 4.4.7 Drainage density
 4.4.8 Drainage frequency
 4.4.9 Infiltration number

4.5 Relief aspects
 4.5.1 Watershed relief
 4.5.2 Relative relief and relief ratio
 4.5.3 Ruggedness number

4.6 Geo-morphological studies
 4.6.1 Structural hills
 4.6.2 Pediment
 4.6.3 Shallow weathered pediplain
 4.6.4 Moderately weathered pediplain
 4.6.5 Structural valley

4.7 Slope classification

4.8 Artificial recharge through check dams
Chapter V: GEOELECTRICAL INVESTIGATION ..104 - 129

5.1 Introduction

5.2 Principle of electrical resistivity method

5.3 Instrumentation, concepts and methodology
 5.3.1 Instrument used
 5.3.2 Electrode configuration
 5.3.3 Site selection
 5.3.4 Vertical Electrical Soundings (VES)

5.4 Interpretation of VES Data
 5.4.1 Qualitative interpretation
 5.4.2 Quantitative methods
 5.4.2.1 Curve matching technique
 5.4.2.2 Computer aided refinement of layer parameters

5.5 Results of VES and GIS Aided Representation
 5.5.1 Iso-apparent Resistivity Maps
 5.5.2 Iso-resistivity Maps
 5.5.3 Depth to basement
 5.5.4 Dar-Zarrouk Parameters

Chapter VI: HYDROCHEMISTRY ...130 - 193

6.1 Water quality in terms of global scenario
6.2 Hydro-chemical study of Shivani watershed area
 6.2.1 Sampling method
 6.2.2 Analytical procedure

6.3 Spatial variation analysis of Hydro-chemical parameters by using GIS
 6.4.1 Electrical conductivity (EC)
 6.4.2 Total dissolved solids (TDS)
 6.4.3 Hydrogen ion concentration (pH)
 6.4.4 Total Hardness (TH)
6.4.5 Nitrate (NO₃)

6.4.6 Cations
 6.4.6.1 Calcium (Ca)
 6.4.6.2 Magnesium (Mg)
 6.4.6.3 Sodium (Na)
 6.4.6.4 Potassium (K)

6.4.7 Anions
 6.4.7.1 Carbonate (CO₃) and Bicarbonate (HCO₃)
 6.4.7.2 Chloride (Cl)
 6.4.7.3 Sulphate (SO₄)
 6.4.7.4 Fluoride (F)

6.5 Interpretation of the analytical data

6.6 Hydro-chemical classifications of groundwaters
 6.6.1 Hydro-chemical facies classification
 6.6.1.1 Classification of groundwaters based on Piper’s trilinear diagram.
 6.6.1.2 Back’s hydro-chemical facies
 6.6.2 Handa’s classification
 6.6.2.1 Groundwater hardness in Shivani watershed.
 6.6.2.2 Salinity and sodium hazard in Shivani watershed
 6.6.3 Stuyfzaud’s classification
 6.6.4 Schoeller’s classification
 6.6.5 Water use classification
 6.6.5.1 Drinking water classification
 6.6.5.2 Irrigation water classifications
 6.6.5.2a Wilcox Classification
 6.6.5.2b Residual Sodium Carbonate or Eaton’s Index (RSC)
 6.6.5.2c Sodium adsorption ratio (SAR)
 6.6.5.2d USSL Classification
 6.6.5.2e Water classification for industrial use
 6.6.5.2f Corrosivity ratio
6.7 Mechanisms of controlling groundwater chemistry
6.8 Ion exchange

Chapter – VII: HYDRO-GEOLOGICAL ANALYSIS AND SPATIAL MODELING

APPROACH THROUGH GIS

7.1 Introduction to Hydro geological Analysis and Spatial Modeling
7.2 Triangulated Irregular Network (TIN)
7.3 Deriving Slope – Aspect
7.4 Flow Direction
7.5 Flow Accumulation
7.6 Flow Length
7.7 Point Interpolation Technique for preparation
-of different thematic maps

Chapter – VIII: SUMMARY AND CONCLUSION

REFERENCES

217 - 229