CHAPTER V

INFLUENCE OF OCEANIC INHOMOGENITIES ON SOUND PROPAGATION
-SOME CASE STUDIES

5.1 INTRODUCTION

5.1.1 Oceanic inhomogenities and acoustics

In reality, the ocean is an extremely complex and variable medium. In such a complex environment more complex models of propagation incorporating statistical characteristics of the variations might be necessary to obtain reliable predictions of the sound field. Ocean currents, internal waves and small-scale turbulence perturb the horizontally stratified character of the sound speed and cause spatial and temporal fluctuations in sound propagation. Boundaries of large currents, such as the Gulf Stream and Kuroshio, represent frontal zones separating watermasses with essentially different characteristics. Within these frontal zones, temperature, salinity, density and sound speed suffer strong variations and hence the acoustic propagation (Levenson and Doblar, 1976). Large eddies in the ocean are mostly observed near intense frontal currents. The parameters of synoptic eddies vary over rather wide range. The diameter of an eddy ranges from 25 to 500 km. Analysis of propagation studies through a cyclonic Gulf Stream eddy revealed considerable variations in the propagation conditions (Vastano and Owens, 1973). Considerable fluctuations of the intensity and phase of sound waves arise in the presence of internal waves (Stanford, 1974). We know that such characteristics of the
ocean water as salinity, temperature, density, and current velocity do not vary smoothly with depth, but in discontinuous fashion. Such fine layered structure leads to multipath of sound transmission and hence cause additional fluctuations of phase and amplitude to the sound signal (Stanford, 1974). Thicknesses of these layers typically vary from tens of centimetres to tens of metres.

From the previous chapters it is inferred that the thermocline characteristics at deep and shallow regions in the Arabian Sea are influenced by a number of oceanographic phenomena namely meso-scale eddies, internal waves, upwelling, sinking, undercurrent etc. These processes result in the formation of various thermocline features such as step structures, sharp vertical gradient and bottom quasi-homogeneous layer with varying thermocline gradient and thickness. In association with the temporal and spatial variabilities in the thermocline one can expect fluctuations in the amplitude and phase of acoustic signals transmitted through the medium.

In the present study, some of the typical thermocline features identified from the previous chapters are used to delineate their role on acoustic propagation. A range-dependent numerical model is used for the simulation of propagation conditions.

5.1.2 DESCRIPTION OF THE MODEL

The basis of all the theoretical models of underwater sound propagation is the wave equation.

\[\nabla^2 \phi = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} \]
where ∇^2 : Laplacian operator, ϕ : Velocity potential, c : speed of sound and t : time

The parabolic equation to the wave equation is of the form

$$\frac{\partial^2 p}{\partial z^2} + 2ik_0 \frac{\partial p}{\partial r} + k_o^2 (n^2 - 1)p = 0$$

where n : refraction index which is a function of depth(z), range(r) and azimuth(θ), p : pressure field (function of range and depth), k_o : reference wave number (ω/c_o), ω : source frequency and c_o : reference sound speed.

This equation is numerically solved by implicit finite difference technique (Lee and McDaniel, 1988) which is a marching solutions. An advantage of this solution is that the calculation necessarily includes many receiver depths and is therefore the results are directly suitable for contouring.

The parabolic equation model (PE-IFD) is quite distinct from the other two main classes of models that are commonly used. The ray theoretical models are based on the assumption that acoustic wavelengths are small enough so that diffraction effects are negligible. The normal mode model is based on the approximation that the ocean is horizontally stratified so that coupling between the waveguide modes is negligible. The PE-IFD model retain these two so that it is valid to much lower frequencies and for more realistic, non-stratified oceans.

This model is used for computing acoustic propagation loss in both range-dependent and range-independent environments.
environments. An important feature of this model is that it can handle arbitrary surface boundary conditions and an irregular bottom with arbitrary bottom boundary conditions. Another important feature of the model is that it can handle horizontal interfaces of layered media.

The inputs to the model are frequency (Hz), source depth (m), receiver depth (m) and range (m) as operational parameters. The environmental inputs are sound speed (m s\(^{-1}\)) profile, water depth (m), density (g/cc) attenuation (dB/wave length) in the water and sediment layers. Reference sound speed and depth/range step sizes are the tuning factors of the model. The usual step sizes are one-fourth of a wave length and half wave length in depth and range respectively.

The model output is the transmission losses to the specified points in the depth-range plane. The model was implemented and validated using the transmission loss measurements made during an acoustic experiment off Cochin (Balasubramanian and Radhakrishnan, 1989;1990). They found good agreement between the experimental and simulations using the model.

The model described above is applied to simulate the propagation conditions under different oceanic environments. Several studies were carried out for the range-dependent environments for other oceanic regions (Davis et al.,1982). The propagation under range-dependent scenario is not reported for Arabian Sea. This aspect is investigated using the PE-IFD model for a wide variety of oceanic features such as layered micro-structure, internal waves and eddy in the following sections.
To delineate the effect of the water born features, the influences of surface and bottom boundaries are kept minimum in the model. A pressure release sea surface is assumed so that the fields will vanish at the surface. An artificial absorbing bottom (Lee and Mc Daniel, 1988) was also assumed in the model to minimise the bottom effect.

5.2 THERMOCLINE AS AN ACOUSTIC BARRIER

As sound propagates, its energy gets refracted in water column depending on the prevalent sound speed gradients. Strong refractions and hence changes in the insonification pattern occur as the relative position of the source/receiver changes. In the ocean vertical gradient are more compared to horizontal. Most commonly large sound speed gradients occur in the thermocline region which in effect can act as a barrier for the sound energy propagating across it. For a given sound speed gradient in the thermocline, refraction increases with increase of the thickness of thermocline. Similarly, for a given thermocline thickness, higher the sound speed gradient higher the refraction. An important feature associated with this kind of refraction is the formation of shadow zones beneath the thermocline depth, which occur for a high frequency sound located near the sea surface.

The results in previous chapters indicate that the gradients and thickness of thermocline change drastically on climatic and synoptic time scales. The variations in gradient is of the order of 0.05°C m⁻¹ to 0.14°C m⁻¹ on climatic scale whereas it is of the order of 0.05°C m⁻¹ to 0.3°C m⁻¹ in the synoptic scale. Similarly, the thermocline thickness varies from 40 to 100m and 10 to 190m on synoptic and climatic scales respectively. Correspondingly, the
3.2.1 MODEL SIMULATIONS OF TRANSMISSION LOSS

To simulate the sound propagation for different thermocline structures, water column profiles are identified with Fregency at 2000 Hz. The sound speed is given in [k] m s⁻¹ at 50 m depth, which is environmentally constant. The transmission loss contours are determined using the PE-IFD model (Fig. 5.1a). The thermocline gradient increases slowly with range above thermocline depth, whereas it increases rapidly below it. This indicates that the energy below thermocline is very less compared to above it. Similarly, the profile without thermocline and corresponding transmission loss contours are presented in Fig. 5.1b. Unlike the other case, this contour shows that the transmission loss increases slowly with range for the entire water column. For instance, the 80 dB contour found at a range of

Fig. 5.1 Iso-loss contours determined by PE-IFD model
(a) water column having thermocline
(b) water column having near iso-thermal condition
shadow zone variability also will be more.

5.2.1 MODEL SIMULATIONS OF TRANSMISSION LOSS

To simulate the sound propagation for different thermocline structure, two typical profiles are identified in the regions off Bombay (18°50'N, 71°35'E; depth <80m) during January and June. Temperature profiles were obtained using MBT. The thermal structure is characterised by a near iso-thermal layer in January and a three-layer structure with strong thermocline gradient in June. The formation of the three-layer structure in June is discussed in detail in Section 4.3.1.1. Model runs were performed by choosing a sound source of 2 kHz frequency at 5m depth, which is located well above the thermocline. A range-independent environment is assumed for the computations. The transmission loss contours for these two cases are presented for comparison. The Figs.(5.1(a&b)) illustrate the effect of thermocline as an acoustic barrier.

The transmission loss contours are presented along with corresponding sound speed profiles containing the three-layer structure (Fig.5.1a). The thermocline gradient is strong (0.25°C m⁻¹) and found at a depth of 40m. The transmission loss contours show significant difference above and below the thermocline depth. The transmission loss increases slowly with range above thermocline depth, whereas it increases rapidly below it. This indicate that the energy below thermocline is very less compared to above it. Similarly, the profile without thermocline and corresponding transmission loss contours are presented in Fig.5.1b. Unlike the other case, this contours show that the transmission loss increases slowly with range for the entire water column. For instance, the 80dB contour found at a range of
11km below thermocline (70m), which is absent at same depth (where the loss is about 70dB) in the near isothermal case. This clearly indicates that the energy available below thermocline is very much limited for an acoustic source above thermocline. Moreover, a well marked shadow zone (transmission loss >80dB) is present below thermocline depth from 11km onwards, which is absent in the other case. The model runs were performed with the source below thermocline also indicated similar results. This suggests that thermocline act as an acoustic barrier for the passage of energy across it.

5.3 LAYERED OCEANIC MICROSTRUCTURE

Studies conducted by several authors indicate that the high frequency sound propagation is drastically affected by small scale oceanic features like inversions, step like structures, etc. (Melberg and Johannessen, 1973; Ewart, 1980; Unni and Kaufman, 1983). This is mainly due to the fact that the inhomogeneities in the oceanic environment cause scattering and hence loss of energy for the transmitted signal. A recent study of Hareesh Kumar et al. (1995) clearly indicated the presence of step like structures in the thermocline in the Arabian Sea. The study also brought out sharp sound speed gradient associated with these step like structures.

During the 101th cruise of FORV Sagar Sampada fine scale measurements of temperature and salinity at close depth intervals (using Seabird CTD system; accuracy ±0.001°C) were made in the coastal waters of Cochin (9°75'N; 75°75'E) from 23 May to 3 June 1992. Vertical profiles of temperature and salinity are characterised by multiple subsurface maxima in salinity corresponding to the
thermocline region (Fig. 5.2). These maxima are separated by pockets of low saline waters. Vertical separation between these multiple maxima varies from 10 to 15 m and their salinity progressively decreased with increasing depth. Among these, the upper maximum is more pronounced. The occurrence of the multiple maxima mostly coincided with the reversal of flow from southerly to northerly at 50 m (Harvesh Kumar et al., 1995). Thus the prevailing flow pattern may be main reason for the formation of multiple maxima.

Temperature (°C) and salinity profile shows the high salinity water mass (Hindia Sea High Salinity Water mass) below the subsurface layer, the salinity reduced by 0.3 PSU to 35.4 PSU. It is interesting to note that in association with the occurrence of the multiple maxima, salinity inversions (≤ 35°C) or salinity structure (≤ 10m thickness) are noticed in the temperature field (Fig. 5.2).

In the temperature profile, a step structure in the thermocline and the corresponding salinity profile consisting of multiple maxima are used in computing the sound speed (Fig. 5.2) by layers of near surface layers (the sonic surface duct), of about 35 m is noticed. In the thermocline, sound speed varied from 1520 to 1540 m s⁻¹. The sound speed gradients (Fig. 5.2) exhibited rapid fluctuations within the thermocline, sound speed and sound speed gradient showing micro-structure in the thermocline.

Fig. 5.2 Vertical profiles of temperature, salinity, sound speed and sound speed gradient showing micro-structure in the thermocline.

5.3.1 MODEL SIMULATIONS OF TRANSMISSION LOSS

The influence of this layered micro-structure upon
thermocline region (Fig. 5.2). These maxima are separated by pockets of low saline waters. Vertical separation between these multiple maxima varies from 10 to 15 m and their salinity progressively decreased with increasing depth. Among these, the upper maximum is more pronounced. The occurrence of the multiple maxima mostly coincided with the reversal of flow from southerly to northerly at 50 m (Hareesh Kumar et al., 1995). Thus the prevailing flow pattern may be mainly responsible for the formation of multiple maxima. Temperature and salinity values of these maxima correspond to 23.5 kg m\(^{-3}\) sigma-t surface, which is obviously the Arabian Sea High Salinity Watermass. Below the subsurface maxima, salinity reduced by 0.3 PSU (35.7 to 35.4 PSU). It is interesting to note that in association with the occurrence of these multiple maxima, either inversions (\(\pm 0.2^\circ C\)) or step like structures (5 to 10 m thickness) are noticed in the temperature field (Fig. 5.2).

The temperature profile containing step structure in the thermocline and the corresponding salinity profile consisting of multiple maxima are used in computing the sound speed profile (Fig. 5.2). A surface layer of near iso-speed conditions (the sonic layer or surface duct), of about 35 m is noticed. In the thermocline, sound speed varied from 1525 to 1546 m s\(^{-1}\). The sound speed gradients (Fig. 5.2) exhibited rapid fluctuations within the thermocline (-2 to 1 s\(^{-1}\)) caused by thermal inversions and multiple subsurface salinity maxima. The positive gradient in sound speed, caused by the advection of warm and low saline waters, coincided with the depths of multiple maxima.

5.3.1 MODEL SIMULATIONS OF TRANSMISSION LOSS

The influence of this layered micro-structure upon
sound propagation is dependent on the sound speed gradients, the physical size and dynamics of the microstructure. As the vertical dimensions of the fine structures were of the order of 1 to 10 m (Fig. 5.2), their variability would be expected to affect sound scattering in frequency ranges from approximately one to tens of kilohertz. This would lead to coherence and fluctuations in phase and amplitude in acoustic signals which in turn would degrade the performance of high-frequency systems. This stresses the importance of the conclusion of the fine structure variations and acoustic propagation.

A sound source of 2 kHz frequency (40 m depth) within the thermocline where the layered micro-structure is present. For transmission loss calculations the sound speed gradient in this layer show maximum fluctuations. The transmission loss values are simulated using the model. To delineate the effect of micro-structure, the transmission loss values are also simulated for the profile with smoothed microstructure are present. In both cases, the similar layer (40 m). This show the variability fluctuation due to microstructure in the thermocline. The transmission loss due to micro-structure in the thermocline is appreciably higher (2 to 4 dB) than the other case without micro-structure. However, for the ranges of 2 km to 4 km, a reverse trend is noticed. This suggests the importance of fine structure in temperature and salinity on high frequency sound propagation.

6.4 INTERNAL WAVES

Previous studies indicated that the internal waves have a profound influence on acoustic propagation (Lee, 1981;
sound propagation is dependent on the sound speed gradients, the physical size and dynamics of the microstructure. As the vertical dimensions of the fine structures were of the order of 1 to 10m (Fig.5.2), their variability would be expected to affect sound scattering in frequency ranges from approximately one to tens of kilo hertz. This would lead to loss of coherence and fluctuations in phase and amplitude in the acoustic signals which in turn will degrade the performance of high frequency systems. This stresses the importance of the inclusion of the fine structure variations in acoustic propagation modelling.

A sound source of 2kHz frequency located (50m depth) within the thermocline where the layered micro-structure is seen, is used for transmission loss simulation. The sound speed gradient in this region show maximum fluctuations. The transmission loss values are simulated using the model. To delineate the effect of micro-structure, the transmission loss values are also simulated for the profile with smoothed microstructure. The transmission loss with range (Fig.5.3) are presented for a receiver within the sonic layer (30m). This show the intensity fluctuation due to microstructure in the thermocline. The transmission loss due to micro-structure in the thermocline is appreciably higher (2 to 4 dB) than the other case without micro-structure. However, for the ranges of 2km to 4km a reverse trend is noticed. This suggests the importance of fine structure in temperature and salinity on high frequency sound propagation.

5.4 INTERNAL WAVES

Previous studies indicated that the internal waves have got profound influence on acoustic propagation (Lee, 1961;
Porter et al., 1974; Baxter and Orr, 1982; Murthy and Murthy, 1986; Finkel and Sherman, 1991). This aspect was not studied for the Arabian Sea, though several studies (Verkey, 1980; Murthy et al., 1992; Rao et al., 1995) reported the dominance of internal waves in this region. Hence, an attempt is made to analyse influence of internal waves on acoustic propagation based on observations and model simulation. The transmission loss for this environment was computed and used to conduct offshore experiments in order to study the phenomenon. The in situ data were collected from October to November 1986. Sea temperature and salinity data were obtained hourly. The temperature dataset was taken once a day. During the experiment, a deep depression was formed in the vicinity of the observational point. Under the influence of this depression, the convergence induced at its periphery caused deepening of thermocline (Fig. 5.4a). FFT analysis of this record revealed the temperature data set is high pass filtered using a Yulwalker digital filter. The frequency response curve of the digital filter is shown in Fig. 5.4b.

Fig. 5.4a Passage of internal waves past a stationary observation point as evidenced by temporal fluctuations in isotherm patterns.

Frequency response curve

![Frequency response curve](image)

Fig. 5.4b Frequency response curve of the Yulwalker digital filter design.
Porter et al., 1974; Baxter and Orr, 1982; Murthy and Murthy, 1986; Pinkel and Sherman, 1991). This aspect was not studied for the Arabian Sea, though several studies (Varkey, 1980; Murthy et al., 1992; Rao et al., 1995) reported the dominance of internal waves in this region. Hence, an attempt is made to analyse influence of internal waves on acoustic propagation based on observations and model simulation of transmission loss for this environment.

An oceanographic experiment was conducted off Karwar, west coast of India during October-November 1986 in order to study the internal wave activity. Measurements were carried out onboard RV Gaveshani, which was anchored at 15°01'N and 73°21'E (depth = 90m) for a period of 12 days (29 October to 10 November, 1996). Vertical profiles of temperature were collected using a TSK Micom Bathythermograph (accuracy: ±0.05°C) at hourly interval. The salinity data was obtained from hydrocasts taken once a day. During the experiment, a deep depression was formed in the vicinity of the observational point. Under the influence of this deep depression, the convergence induced at its periphery caused deepening of thermocline (Fig.5.4a). FFT analysis of temperature at different depth levels revealed low frequency harmonics (lower than inertial, ∼ 46 hrs), which was induced by the continuous deepening of the thermocline. To remove this low frequency component, the temperature data set is high pass filtered using a Yule-walker digital filter. The frequency response of the digital filter is shown in Fig.5.4b.

In order to identify oscillations in the thermocline, the isotherm within the thermocline are subjected to FFT. The most dominant harmonics are inertial (46 hour), diurnal (24 hour) and semi-diurnal (12 hour). The harmonics of the
inertial periodicity are generated by storm-induced wind field. Pollard (1970) also has observed inertial oscillations in connection with a sudden change of the wind speed and rapid changes in barometric pressure. In order to identify the influence of different harmonics on sound propagation, the entire data set is subjected to Yulwalker band pass filter. After having separated out the different harmonics, the model simulations were carried out for the individual data sets using the PE-IFD model.

5.4.1 MODEL SIMULATIONS OF TRANSMISSION LOSS

The internal wave spectrum occupies a continuum in scale; from the Brunt Vaisala period to the inertial period having all horizontal wavelengths and vertical wavelengths, possibly from a few centimetres to the depth of the ocean. To bring out the amplitude of the internal waves the depth-time section of the temperature at the observation point is shown in Fig.(5.4a). Fluctuations in temperature field is quite evident in the thermocline region and is due to internal wave propagation. In the absence of direct measurements, a two-layer approximation of the ocean was made for the computation of internal wave speed. Based on this approximation (Pond and Pickard, 1983) the speed \(v \), of the internal wave can be computed from

\[
V^2 = gh \left[(\rho - \rho') / \rho' \right]
\]

\[
p' = 1.022582 \text{ g cm}^{-3}
\]

\[
P = 1.024367 \text{ g cm}^{-3}
\]

sea surface

71m

\(\rho' \)

sea bottom

71
Fig. 5.5 Intensity fluctuations due to internal wave fields
(a) strong internal wave field (b) weak internal wave field
where g is the acceleration due to gravity, h is the thickness of the top layer of weak density gradient, ρ is the mean density of the bottom layer of strong density gradient, and ρ' is the mean density of the top layer. The average speed of the internal wave computed to be 40 cm s\(^{-1}\).

To model the acoustic fluctuations, basic assumptions are made which allow to relate the time series measurements to a range-dependent field (Rubenstein and Brill, 1991). The first assumption is that the temperature field is made up of soliton-like internal waves. Since solitons are dispersionless the temperature fluctuations with a constant speed (internal wave speed) can advect to yield a range-dependent field. Secondly, the direction of propagation of the waves is assumed to be that of acoustic propagation.

The hourly sound speed profiles were computed corresponding to the temperature profiles following Mackenzie (1981). The entire sound speed profiles are separated into discrete sets of 24. With an internal wave speed of 40 cm s\(^{-1}\) this corresponds to 33.6 km of horizontal range. The effects of internal waves on sound propagation is more in the frequency range 50Hz-20kHz (Etter, 1991). A 3kHz source frequency source selected at 5m depth to simulate the transmission loss.

Acoustic intensity fields are simulated under range-dependent (with 24 profiles) and range-independent environments (with single profile). The first profile in the set of 24 is taken for the range-independent model simulation. The simulation of transmission loss is performed for all the sets. The array of transmission loss values
The transmission loss contours for two sets viz. the higher and lower harmonics (periods greater than 12hrs) are presented in Figs. 5.7(a & b). The contours for higher harmonics (diurnal and higher) are shaded black in the diagram. The difference field show large variations, corresponding to the diurnal harmonics than the high-frequency harmonics. Fig. 5.6 Contours of propagation loss as a function of range and depth for internal wave with (a) all the harmonics (b) high frequency harmonics (periods greater than 12hrs).
obtained from simulation for range-independent environment is subtracted from the corresponding array for the range-dependent environment to obtain a loss difference array. This difference array of transmission loss is contoured (difference contour) for all the individual sets. The difference contours indicate strong (Fig.5.5a) and weak (Fig.5.5b) fluctuations in the acoustic field. The strong fluctuations are associated with transmission loss difference of -15dB to 25dB, whereas for the weak field it mostly between -5dB and 5dB except few higher differences (5-15dB). These strong (S) and weak (W) fluctuations are clearly evident in thermal structure (Fig.5.4a). Thus the internal wave field can cause an acoustic intensity fluctuation of -15 to 25dB, which is appreciably high.

The propagation conditions for different spectral bands of the internal waves mentioned above are simulated separately to identify their influence. It may be noted that since only 24 profiles (33.6 km horizontal range) are utilised for the present simulation spanning one day, the effects of inertial oscillation could not be resolved. Simulations are carried out for all the remaining sets of data in the similar manner.

The transmission loss contours for two sets viz., the set containing all the harmonics (Fig.5.6a) and for the higher frequency (higher than semi-diurnal) harmonics (Fig.5.6b) indicate that they are almost similar but with certain minor variations. To investigate further this aspect, the difference contours for two harmonics (diurnal and higher) are presented in Figs. (5.7(a & b)). The contours greater than 10dB difference are shaded black in the diagram. The difference field show large variations corresponding to the diurnal harmonics than the high
Fig. 5.7 Difference contours of propagation loss values (a) high frequency harmonics (period greater than 12hrs) (b) diurnal frequency (period 24hrs)

A sonic layer depth of about 25 m at the western periphery compared to a diffused (≈0.1°C m⁻¹) and deeper (≈40 m) at the eastern side. However, the core of the eddy is characterised by a deep thermocline (≈220 m) with a thermocline gradient of ≈0.1°C m⁻¹. Since the
frequency internal waves. This clearly suggest that the influence of high frequency harmonics closely resemble with internal wave field containing all harmonics. This established that to study the acoustic field in the presence of internal wave, major focus has to be given to high frequency harmonics (greater than semi-diurnal frequency) compared to low frequency internal wave harmonics.

5.5 MESO-SCALE EDDIES

Influence of eddies on sound propagation was studied by several authors (Weinberg and Zabalgogeazcoa, 1977; Mellberg et al., 1990) and found that the eddies play a vital role in the long range propagation. Hence, an attempt is made to understand the influence of an eddy on sound propagation. During MONEX-79 temperature data were collected off Somalia normal to the coast along 8°N from west to east using XBT. The station located near to the coast was having a depth of 300m and it increased to 4500m at a distance of 130km from the shore and thereafter it maintained the same depth. The vertical structure of temperature (Fig.5.8) reveals the presence of a warm core eddy with its core temperature of about 25°C (anticyclonic) which has an horizontal extent of approximately 600km and vertical extent of about 400m. The individual sound speed profiles across the eddy is presented in Fig.5.9. A sonic layer depth of about 220m is noticed corresponds to the trough of the eddy, where the sound speed is about 1531 cm s⁻¹. The sonic layer depths are vary from one end of the eddy to the other. Corresponding to this a sharp thermocline (Δ 0.25°C m⁻¹) at a shallow depth (Δ 20m) at the western periphery compared to a diffused (< 0.06°C m⁻¹) and deeper (Δ 40m) at the eastern side. However the core of the eddy is characterised by a deep thermocline (Δ 220m) with a thermocline gradient of Δ 0.1°C m⁻¹. Since the
Fig. 5.8 Presence of a warm core eddy evidenced by the spatial fluctuations in isotherm patterns.
5.5.1 MODEL SIMULATIONS OF TRANSMISSION LOSS

In order to investigate the effect of this warm core eddy on sound propagation, transmission loss simulations were carried out using the GIP (Goddard Integrated Propagation) model. Here, the effect of eddies on a sound source is studied. As the horizontal extent of the eddy is very large (800 km), high frequency sound could not propagate across the eddy. Such errors are obtained only for the frequencies of the order of few tens of Hertz, and, in the simulation a source frequency of 1000 Hz is used. The source is assumed to be positioned at 80 m depth, well within the eddy and deep sound channel. Computations for transmission loss for the entire range up to depth of 500 m were carried out (Figs. 5.10(a & b), which brings out the influence of the sound propagation, the computations were repeated for an identical environment except that the water column is assumed laterally homogeneous and sound speed profile to be representative of the entire range.

Transmission loss results obtained for both these cases are presented in Figs. 5.10(a & b). Here, the shaded area represents regions with transmission loss higher than 100 dB. The 100 dB value was selected arbitrarily, such that all the convergence zones are represented in the figures. The

Fig. 5.9 Vertical temperature profiles across the eddy
eddy was identified using hydrographic measurements without repeating the same stations, it is difficult to compute its movements. Thus for the present study a stationary eddy is assumed for transmission loss computations. In order to get the vertical profile up to station depth, a climatological mean profile available for the region is appended to the bottom of the observed profiles.

5.5.1 MODEL SIMULATIONS OF TRANSMISSION LOSS

In order to investigate the effect of this warm core eddy on sound propagation, transmission loss simulation were carried out using the PE-IFD model. Here, the effect of eddies on solely waterborne effect is studied. As the horizontal extent of the eddy is very large (600 km), high frequency sound would not propagate across the eddy. Such large ranges are attained only at low frequencies of the order of few tens of hertz. Hence, in the simulation a source frequency of 100Hz is used. The source is assumed to be positioned at 150m depth, well within the eddy and deep sound channel. Computed transmission loss for the entire range and upto a depth of 500m is presented in Fig.5.10(a & b), which covers the extent of the eddy. In order to bring out the influence of the eddy on sound propagation, the computations were repeated for an identical environment except that the water column is assumed laterally homogeneous. This is achieved by taking the initial sound speed profile to be representative of the entire range.

Transmission loss result obtained for both these cases are presented in Figs.5.10(a&b). Here, the shaded area represents regions with transmission loss higher than 100dB. The 100dB value was selected arbitrarily, such that all the convergence zones are represented in the figures. The
Fig. 5.10 Iso-loss contours determined by PE-IFD model (a) propagation across the eddy (b) propagation without eddy. Shaded (black) area represent loss higher than 100 dB.
source at 150m
Receiver at 100m
Frequency 100Hz

Fig. 5.11 Propagation loss versus range from PE-IFD model for 100 Hz Frequency source at 150m depth and receiver at 100m depth. The Continuous line for propagation across eddy and dash line for without eddy.
periodic narrow (10km wide at the surface) white vertical bands occurring in Fig. (5.10a) are the convergence zones which occur at a regular range interval of about 60km. The pattern is somewhat smeared as the depth increases but a high degree of insonification is evident at depths more than 250m. In contrast, Fig. 5.10b, which corresponds to a range-independent, eddy-free environment does not show evidence of such convergence zones except at deeper levels than the source depth. The zones are well defined and sharp compared to the previous case. Also, the area of insonification is much less especially at longer ranges from the sound source. Almost similar observations were made by Lawrence (1983) in a modelling study of acoustic propagation across warm core eddy in the Tasman sea, where the convergence zones rose to near surface in the presence of a warm core eddy. The results of the simulation show the significance of the eddy on long range sound propagation characteristics.

In order to highlight the magnitude of acoustic intensity variation caused by the presence of the eddy, transmission loss as a function of range at a depth of 100m for both the cases are presented in Fig. 5.11. About 15-20dB convergence gain is evident from the figure. Lateral shift in the pattern of the convergence zones of the order of about 10km is also noticed. The width of the convergence zone and lateral shift in the zone are all depend on the detailed nature of the eddy field.