LIST OF FIGURES

1.1 Location Map of ANW.
1.2 Accessibility of ANW.
1.3 Isohytal Map.
1.4 Annual Variation of Rainfall in Asundi Nalla Watershed.
1.5 Geological Map of ANW.
1.6 Soil Map of ANW.

2.1 Topography of ANW.
2.2 Relief Features of ANW.
2.3 Cross Section along Latitude.
2.4 Longitudinal Cross Section of ANW.
2.5 Slope Map of Asundi Nalla Watershed.
2.6 Lineament Map of ANW.
2.7 Drainage Map of ANW.
2.8 Channel Gradients of ANW.
2.9 Land Use and Land Cover Map of ANW.
2.10 Satellite Imagery of ANW.
2.11 3-D view of Asundi Nalla Watershed.
2.12 Hypsometric Curve of Asundi Nalla Watershed.
3.1 Locations of Existing Bore wells in Asundi Nalla Watershed.

3.2 to 3.38 Relations between Depth and Yield of Bore wells of each Village.

3.39 Histogram for Depth and Percentage of Bore wells.

3.40 Bar Diagram for Percentage of Bore wells Vs. Casing.

3.41 Histogram for Yield and Percentage of Bore wells.

3.42 Contour Map for Depth of Bore wells in ANW.

3.43 Contour Map for the Yield of Bore wells in ANW.

3.44 Location of Bore wells with the Lineaments in Asundi Nalla Watershed.

3.45 Location of four Observation Wells.

3.46 Water Level Fluctuation at Asundi Station.

3.47 Water Level Fluctuation at Honnatti Station.

3.48 Water Level Fluctuation at Ranebennur Station.

3.49 Water Level Fluctuation at Chetra Station.

3.50 Contour Map of Water Level Fluctuation (1976).

3.51 Contour Map of Water Level Fluctuation (1980).

3.54 Contour Map of Water Level Fluctuation (1993).
3.58 Water Table Contour Map (1976).
3.59 Water Table Contour Map (1980).
3.60 Water Table Contour Map (1983).
3.61 Water Table Contour Map (1989).
3.62 Water Table Contour Map (1993).
3.63 Water Table Contour Map (1995).
3.64 Water Table Contour Map (1999).
3.65 Water Table Contour Map (2002).

4 Location of Groundwater Samples Collected.
4.1 Variation of EC.
4.2 Areal Distribution of Electrical Conductivity.
4.3 Variation of pH.
4.4 Areal Distribution of pH.
4.5 Variation of Ca.
4.6 Areal Distribution of Calcium.
4.7 Variation of Mg.
4.8 Areal Distribution of Magnesium.
4.9 Variation of Na.
4.10 Areal Distribution of Sodium.

4.11 Variation of K.

4.12 Areal Distribution of Potassium.

4.13 Variation of Cl.

4.14 Areal Distribution of Chloride.

4.15 Variation of SO$_4$.

4.16 Areal Distribution of Sulphate.

4.17 Variation of HCO$_3$.

4.18 Areal Distribution of Bicarbonate.

4.19 Variation of CO$_3$.

4.20 Areal Distribution of Carbonate.

4.21 Variation of TDS.

4.22 Areal Distribution of Total Dissolved Solids.

4.23 Variation of TH.

4.24 Areal Distribution of Total Hardness.

4.25 Piper's Trilinear Diagram of ANW.

4.26 Piper's Trilinear Diagram of Ranebennur City.

4.27 Back's Trilinear Diagram of ANW.

4.28 Back's Trilinear Diagram of Ranebennur City.

4.29 Durov's Diagram of ANW.

4.30 Durov's Diagram of Ranebennur City.

4.31 Gibb's Diagram of ANW.
4.32 Gibb’s Diagram of Ranebennur City.

4.33 USSL Diagram of ANW.

4.34 Wilcox Diagram of ANW.

4.35 Component I Vs. II

4.36 Component I Vs. III

5.1 Proposed Management Plan for ANW.
FIG. 1.1 - LOCATION MAP OF ASUNDI NALLA WATERSHED
FIG 1.2 - ACCESSIBILITY MAP OF ASUNDI NALLA WATERSHED
FIG. 1.4 - ANNUAL VARIATION OF RAINFALL.

MONTHS

RAINFALL (cm)

JAN FEB MAR APRIL MAY JUNE JULY AUG SEPT OCT NOV DEC

AVERAGE 51.2 (cm)
FIG 1.5 - GEOLOGICAL MAP OF ASUNDI NALLA WATERSHED

[Diagram of a geological map showing different rock formations and symbols for geological features.]

LEGEND
- Pebbles (Alluvial Formation)
- Banded Iron Formations and Shale
- Greywacke
- Dip and Strike

Scale: 1:1,25,000

Directions: North Arrow

Distance: 0 2 4 6 Kilometers
Gravelly clay soils, moderately eroded.

Deep, well-drained, calcareous, clayey soils.

Calcareous, cracking clay soils.

Very deep, moderately well-drained, calcareous, cracking clayey soil, moderately eroded.
FIG 2.1 - TOPOGRAPHY OF ASUNDI NALLA WATERSHED
FIG 2.3 - CROSS SECTION ALONG LATITUDE
FIG 2.5 - SLOPE MAP OF ASUNDI NALLA WATERSHED

75°42' - 75°29'
14°35'

6 Kilometers

Symbol Slope class

Nearly level
Very gentle
Gentle Slope
Moderate Slope
Moderately Steep

SCALE: 1:25,000
0 2 4 6 Kilometers

N
Fig. 2.8 - CHANNEL GRADIENTS OF ANW

DISTANCE IN KMS

ELEVATION ABOVE MSL IN METERS
FIG 2.10 - SATELLITE IMAGE OF ASUNDI NALLA WATERSHED
FIG 2.11 - 3D View of Asundi Nalla Watershed
FIG 3.1 - LOCATION OF THE EXISTING BORE WELLS IN ASUNDI NALLA WATERSHED

LEGEND
- Location of Bore Wells
- Villages

SCALE 1: 1,25,000

Kms
Fig. 3.2 to 3.38 - Relation between depth and yield of borewells of each village

Fig. 3.2 - Depth Vs yield (Hullatti tanda)

Fig. 3.3 - Depth Vs yield (Hullatti)

Fig. 3.4 - Depth Vs yield (Guddanveri)
Fig. 3.8 - Depth Vs yield (Gudagur)

Fig. 3.9 - Depth Vs yield (Maidur)

Fig. 3.10 - Depth Vs yield (Kajjari)
Fig. 3.20 - Depth Vs yield (Gangapur)

Fig. 3.21 - Depth Vs yield (Kunbevu)

Fig. 3.22 - Depth Vs yield (Kakol tanda)
Fig. 3.23 - Depth Vs yield (Kakol)

Fig. 3.24 - Depth Vs yield (Hanumanamatti)

Fig. 3.25 - Depth Vs yield (Hosa Hulihalli)
Fig. 3.29 - Depth Vs yield (Asundi)

Fig. 3.30 - Depth Vs yield (Lakmojikop)

Fig. 3.31 - Depth Vs yield (Ramagondanhalli)
Fig. 3.38 - Depth Vs yield (Anur)
Fig. 3.39 - HISTOGRAM FOR DEPTH AND PERCENTAGE OF BORE WELLS

DEPTH IN METERS

PERCENTAGE OF BORE WELLS

28.43
12.42
12.09
11.11
10.46
8.17
5.56
3.59
1.96
1.31
0.65
0.65
0.31
0.08
0.02

30 25 20 15 10 5 0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Fig. 3.40 - PERCENTAGE OF BORE WELLS VS CASING

- 78% in the 0 - 10 metre range
- 19% in the 10 - 20 metre range
- 2% in the 20 - 30 metre range
- 1% in the 30 - 40 metre range
Fig. 3.41 - HISTOGRAM FOR YIELD AND PERCENTAGE OF BORE WELLS
FIG 3.42 - CONTOUR MAP FOR THE DEPTH OF BORE WELLS IN ANW

SCALE 1:1,25,000

Kilometers
FIG 3.43 - CONTOUR MAP FOR THE YIELD OF BORE WELLS IN ANW
SCALE 1:1,25,000

Kilometers

SCALE 1:1,25,000

Kilometers
FIG 3.44 - LOCATION OF BORE WELLS WITH THE LINEAMENT IN ASUNDI NALLA WATERSHED

LEGEND
- Lineament
- Location of Bore Wells
- Villages

SCALE 1: 1,25,000
0 2 4 6 Kms
FIG 3.45 - LOCATION OF FOUR OBSERVATION WELLS
Fig. 3.46 - Water level fluctuation at Asundi Station
Fig. 3.47 - Water level fluctuation at Honnati Station
Fig. 3.48 - Water level fluctuation at Ranebennur Station
Fig. 3.49 - Water level fluctuation at Chetra Station
FIG 3.51 - Contour map of water level fluctuation (1980)
FIG 3.52 - Contour map of water level fluctuation (1983)
FIG 3.53 - Contour map of water level fluctuation (1989)
FIG 3.55 - Contour map of water level fluctuation (1995)

SCALE 1:1,25,000

Kilometers

Honnatti

Chetra

Asundi

Ranebennur

SCALE 1:1,25,000

2 0 2 4 6 Kilometers
FIG 3.57- Contour map of water level fluctuation (2002)
FIG 3.58 - WATER TABLE CONTOUR MAP (1976)

SCALE 1:1,25,000

Kilometers
FIG 3.62 - WATER TABLE CONTOUR MAP (1993)
Location of Groundwater Samples Collected
Fig. 4.1 - VARIATION DIAGRAM OF EC

Average EC = 741.35 micro mhos

Sample Nos

Fig. 4.2 - AREAL DISTRIBUTION OF ELECTRICAL CONDUCTIVITY
Fig. 4.5 - VARIATION DIAGRAM OF CALCIUM

Fig. 4.6 - AREAL DISTRIBUTION OF CALCIUM
Fig. 4.7 - VARIATION DIAGRAM OF MAGNESIUM

VARIATION DIAGRAM OF MAGNESIUM

Avg = 67.3 mg/l

Fig. 4.8 - AREAL DISTRIBUTION OF MAGNESIUM

AREAL DISTRIBUTION OF MAGNESIUM
Fig. 4.9 - VARIATION DIAGRAM OF SODIUM

Sample Nos

Avg = 228 mg/l

Fig. 4.10 - AREAL DISTRIBUTION OF SODIUM

SCALE 1:1,25,000
Fig. 4.13 - VARIATION DIAGRAM OF CHLORIDE

Avg = 308 mg/l

Fig. 4.14 - AREAL DISTRIBUTION OF CHLORIDE

SCALE 1:1,25,000
Fig. 4.15 - VARIATION DIAGRAM OF SULPHATE

SO4 (in mg/l)

Avg=166.1 mg/l

Sample Nos

FIG 4.16 - AREAL DISTRIBUTION OF SULPHATE

SCALE 1:1,25,000

Kilometers

FIG 4.16 - AREAL DISTRIBUTION OF SULPHATE

SCALE 1:1,25,000

Kilometers
Fig. 4.17 - VARIATION DIAGRAM OF BICARBONATE

Avg = 283.52 mg/l

Sample Nos

Fig. 4.18 - AREAL DISTRIBUTION OF BICARBONATE

SCALE 1:1,25,000

Kilometers
Fig. 4.19 - VARIATION DIAGRAM OF CARBONATE

Avg=14.97 mg/l

FIG 4.20 - AREAL DISTRIBUTION OF CARBONATE
FIG 4.21 - VARIATION DIAGRAM OF TDS

Avg = 1158 mg/l

FIG 4.22 - AREAL DISTRIBUTION OF TOTAL DISSOLVED SOLIDS
Fig. 4.23 - VARIATION DIAGRAM OF TOTAL HARDNESS

Avg = 480.6 mg/l

Fig. 4.24 - AREAL DISTRIBUTION OF TOTAL HARDNESS
FIG. 4.25 - PIPER'S TRIPLEAR DIAGRAM OF ANW.

\[\text{CO}_3^{2-} + \text{HCO}_3^- \]
FIG. 4.26. PIPER'S TRILINEAR DIAGRAM OF RENEBENNUR.

Cl

Ca\(^{2+}\) + Mg\(^{2+}\)

SO\(_4\)\(^{2-}\)

CO\(_3\)\(^{2-}\) + HCO\(_3\)\(^-\)

Na\(^+\) + K\(^+\)

Mg

Ca\(^{2+}\)

Cl

Na\(^+\) + K\(^+\)
FIG. 4.27. BACK'S TRILIEAR DIAGRAM OF ANW.
FIG. 4-28. BACK'S TRILINEAR DIAGRAM OF RAMEBNUR.
FIG 4.29 - DUROV'S DIAGRAM OF ANW
FIG. A.30 - Durov's Diagram of Ranebennur City
FIG 4.32 - GIBB'S DIAGRAM OF RANE BENNUR CITY
Richard's (USSL, 1954) classification of groundwater for irrigational suitability of ANW
Wilcox's (1953) Classification of Groundwater For Irrigation Suitability of ANW

Diagram:

- **Y-axis:** Percentage of Sodium
- **X-axis:** Specific Conductance Micromhos/cm at 25°C

Legend:
- **Excellent to Good**
- **Doubtful to Unsuitable**
- **Permissible to Doubtful**
- **Unsuitable**

The diagram illustrates the classification of groundwater based on sodium percentage and specific conductance.