LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Drugs with plant origin</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Apocynaceae plants showing various biological activities</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>Sites of accumulation of the antitumor alkaloid CPT and its natural derivatives in several natural sources</td>
<td>7</td>
</tr>
<tr>
<td>1.4</td>
<td>Shoot cultures of medicinal plants</td>
<td>13</td>
</tr>
<tr>
<td>1.5</td>
<td>Root cultures of medicinal plants</td>
<td>13</td>
</tr>
<tr>
<td>1.6</td>
<td>Hairy root cultures producing pharmaceutical products of interest</td>
<td>14</td>
</tr>
<tr>
<td>2.1</td>
<td>Combinations used for indirect organogenesis giving response</td>
<td>33</td>
</tr>
<tr>
<td>2.2</td>
<td>Establishment of transformation in C. fragrans using parameters</td>
<td>34</td>
</tr>
<tr>
<td>3.1</td>
<td>List of compounds from GC/MS analysis</td>
<td>63</td>
</tr>
<tr>
<td>3.2</td>
<td>Comparison of classes of compounds in transformed and non transformed root</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>Comparison of different classes of compounds among in vivo, in vitro plants and callus cultures exhibiting different levels of organizations</td>
<td>69</td>
</tr>
<tr>
<td>3.4</td>
<td>Comparison of different classes of compounds produced by in vivo plant parts and in vitro cultures</td>
<td>70</td>
</tr>
<tr>
<td>3.5</td>
<td>Comparison of different classes of compounds in sequential extracts of roots</td>
<td>71</td>
</tr>
<tr>
<td>3.6</td>
<td>Comparison of different classes of compounds in sequential extracts of bark</td>
<td>71</td>
</tr>
<tr>
<td>3.7</td>
<td>Comparison of different classes of compounds in sequential extracts of leaves</td>
<td>71</td>
</tr>
<tr>
<td>3.8</td>
<td>Comparison of different classes of compounds in sequential extracts of shoots</td>
<td>72</td>
</tr>
<tr>
<td>3.9</td>
<td>Comparison of different classes of compounds in sequential extracts of callus</td>
<td>72</td>
</tr>
<tr>
<td>4.1</td>
<td>Minimum Inhibitory Concentration of C. fragrans extracts</td>
<td>90</td>
</tr>
<tr>
<td>4.2</td>
<td>Total phenol content of crude in vivo and in vitro extracts</td>
<td>92</td>
</tr>
<tr>
<td>4.3</td>
<td>Total flavonoid content in crude in vivo and in vitro extracts</td>
<td>94</td>
</tr>
<tr>
<td>4.4</td>
<td>DPPH radical scavenging activity of crude in vivo and in vitro extracts</td>
<td>95</td>
</tr>
<tr>
<td>4.5</td>
<td>Hydrogen radical scavenging activity of in vivo and in vitro extracts</td>
<td>97</td>
</tr>
<tr>
<td>4.6</td>
<td>Ferric reducing antioxidant potential (FRAP) of In vivo and In vitro extracts</td>
<td>98</td>
</tr>
<tr>
<td>4.7</td>
<td>Phosphomolybdenum antioxidant activity of in vivo and in vitro extracts</td>
<td>99</td>
</tr>
<tr>
<td>4.8</td>
<td>Correlation analysis between antioxidant activities</td>
<td>100</td>
</tr>
</tbody>
</table>