CONTENTS

Chemistry of Coumarins

Studies on Coumarin derivatives

1.1 Introduction
1.2 Aromaticity of coumarin.
1.3 Spectroscopic studies of coumarin.
1.4 Current trends in the coumarin.
1.5 References

Synthesis of Coumarin derivatives using Phosphotungstic acid as catalyst.

2.1 Introduction
2.2 Methods for the synthesis of coumarin derivatives.
2.3 Pechmann condensation of β-ketonic esters with phenols using different catalysts.
2.4 Applications of Phosphotungstic acid in organic synthesis.
2.5 Present work
2.6 Materials and methods
2.7 Experimental procedure
2.8 Results and discussion
2.9 References
Synthesis of novel Azetidinone derivatives from Coumarin moiety.

3.1 Introduction
3.2 Methods for the synthesis of 2-azetidinone derivatives.
3.3 Biologically active 2-azetidinone derivatives.
3.4 Present work
3.5 Materials and methods
3.6 Experimental procedure
3.7 Results and discussion
3.8 References

Synthesis of Pyrimidine derivatives from Coumarin moiety.

4.1 Introduction
4.2 Methods for the synthesis of pyrimidine derivatives.
4.3 Biologically active pyrimidine derivatives.
4.4 Present work
4.5 Materials and methods
4.6 Experimental procedure
4.7 Results and discussion
4.8 References
Studies on Benzimidazole derivatives

5.1 Introduction
5.2 Aromaticity of benzimidazole.
5.3 Spectroscopic studies of benzimidazole.
5.4 Current trends in the benzimidazole.
5.5 Biologically active benzimidazoles.
5.6 References

Microwave assisted synthesis of 5-bromo-2-aryl substituted-1H-benzimidazole derivatives.

6.1 Introduction
6.2 Microwave Theory
6.3 Current trends in microwave synthesis of benzimidazoles.
6.4 Present work
6.5 Materials and methods
6.6 Experimental procedure
6.7 Results and discussion
6.8 References
Wells-Dawson heteropolyacid catalyst - synthesis of Benzimidazoles under microwave irradiation.

7.1 Introduction

7.2 Methods for the synthesis of benzimidazole derivatives using different catalysts.

7.3 Application of Wells-Dawson heteropolyacid in organic synthesis.

7.4 Present work

7.5 Materials and methods

7.6 Experimental procedure

7.7 Results and discussion

7.8 References

8.1 General Introduction

8.2 Anti-microbial activities
 Anti-bacterial activity
 Anti-fungal activity
 Anti-tuberculosis activity
 DNA Cleavage study

8.3 Pharmacological activities
 Anti-inflammatory activity
 Analgesic activity
 Anti-convulsant activity
 Anti-pyretic activity
 Cytotoxic activity

8.4 References