CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Chapter</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1-36</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction to polymer composites</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Tribology</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Fundamentals of wear</td>
<td>4</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Sliding wear</td>
<td>6</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Wear behaviour of polymers and their composites</td>
<td>7</td>
</tr>
<tr>
<td>1.3.3</td>
<td>Influence of various parameters on abrasive wear performance</td>
<td>8</td>
</tr>
<tr>
<td>1.4</td>
<td>Literature survey</td>
<td>9</td>
</tr>
<tr>
<td>1.4.1</td>
<td>Thermoplastics</td>
<td>11</td>
</tr>
<tr>
<td>1.4.2</td>
<td>Effect of fillers</td>
<td>15</td>
</tr>
<tr>
<td>1.4.3</td>
<td>Inorganic particles with other fillers</td>
<td>17</td>
</tr>
<tr>
<td>1.4.4</td>
<td>Fibre reinforced composites</td>
<td>18</td>
</tr>
<tr>
<td>1.4.5</td>
<td>Internal lubricants and short fibres</td>
<td>20</td>
</tr>
<tr>
<td>1.4.6</td>
<td>Solid lubricants</td>
<td>22</td>
</tr>
<tr>
<td>1.5</td>
<td>Scope of the present investigation</td>
<td>23</td>
</tr>
<tr>
<td>1.6</td>
<td>Background and motivation of the investigation</td>
<td>24</td>
</tr>
<tr>
<td>1.7</td>
<td>Objectives of this study</td>
<td>24</td>
</tr>
<tr>
<td>1.8</td>
<td>Present research problem</td>
<td>25</td>
</tr>
<tr>
<td>1.9</td>
<td>References</td>
<td>26</td>
</tr>
</tbody>
</table>
PART A - MATERIALS AND EQUIPMENTS

2.1 MATERIALS

2.1.1 Nylon 6,6
2.1.2 Nylon 6
2.1.3 Polytetra flouro ethylene
2.1.4 Polycarbonate
2.1.5 Polypropylene
2.1.6 Ultra high molecular weight polyethylene
2.1.7 Fillers
2.1.8 Solid lubricants/Tribological additives
2.1.9 Molybdenum disulfide
2.1.10 Graphite
2.1.11 Carbon black
2.1.12 Glass fibers
2.1.13 Nanoclay

2.2 EQUIPMENTS

2.2.1 Extruder
2.2.2 Injection moulding machine
2.2.3 Density
2.2.4 Universal testing machine
2.2.5 Izod impact pendulum tester
2.2.6 Surface hardness tester
2.2.7 Differential scanning calorimeter
2.2.8 Dynamic mechanical analyser
2.2.9 Thermogravimetric analyser
2.2.10 Pin–on-disc sliding wear testing machine
2.2.11 Laser assisted etching machine
2.2.12 Surface roughness tester
2.2.13 Optical polarized microscope
2.2.14 Scanning electron microscopy
PART B - THEORY AND TECHNIQUES

2.3 Physical properties
 2.3.1 Density
 2.3.2 Water uptake behaviour
 2.3.3 Void content
 2.3.4 Surface hardness

2.4 Mechanical properties
 2.4.1 Tensile properties
 2.4.2 Izod impact strength

2.5 Thermo-analytical techniques
 2.5.1 Differential scanning calorimetry
 2.5.2 Thermogravimetric analysis
 2.5.3 Dynamic mechanical analysis

2.6 Wear Properties
 2.6.1 Sliding wear technique

2.7 Laser Assisted Etching (LAE)
 2.7.1 Laser/Polymer Interactions
 2.7.2 Carbonization

2.8 Roughness measurements

2.9 Scanning electron microscopy

2.10 Statistical analysis

2.11 References

3 STUDIES ON MECHANICAL, THERMAL, WEAR AND MORPHOLOGICAL BEHAVIORS OF NYLON66/ POLYTETRA FLUORO ETHYLENE COMPOSITES

3.1 Introduction

3.2 Fabrication of composites

3.3 Results and Discussion
 3.3.1 Physico-mechanical properties
 3.3.1.1 Density
 3.3.1.2 Water uptake behaviour
 3.3.1.3 Void content
3.3.1.4 Surface hardness
3.3.1.5 Tensile behaviours
3.3.1.6 Impact strength
3.3.2 Thermal analysis
3.3.2.1 Heat distortion temperature
3.3.2.2 Differential scanning calorimetry
3.3.2.3 Dynamic mechanical analysis
3.3.2.4 Thermogravimetric analysis
3.3.3 Sliding wear behaviours
3.3.3.1 Wear loss
3.3.3.2 Specific wear rate
3.3.3.3 Coefficient of friction
3.3.3.4 Wear Mechanism
3.3.4 Regression analysis
3.3.5 Laser assisted etching behaviour
3.3.5.1 Morphology of laser etched surfaces
3.4. Conclusions
3.5. References

4 STUDIES ON MECHANICAL, THERMAL, WEAR AND MORPHOLOGICAL BEHAVIOURS OF GRAPHITE FILLED NYLON 66/POLYTETRAFLUOROETHYLENE COMPOSITES
4.1 Introduction
4.2 Compounding and specimen preparation
4.3 Results and Discussion
4.3.1 Physico-mechanical properties
4.3.1.1 Density
4.3.1.2 Water uptake behavior
4.3.1.3 Void content
4.3.1.4 Surface hardness
4.3.1.5 Tensile behaviours
4.3.1.6 Impact strength
5
STUDIES ON MECHANICAL, THERMAL, WEAR AND MORPHOLOGICAL BEHAVIORS OF MOLYBDENUM DISULPHIDE FILLED NYLON 66/CARBON BLACK / COMPOSITES

5.1. Introduction 141
5.2 Compounding and specimen preparation 144
5.3 Results and Discussion 144
 5.3.1 Physico - mechanical properties 144
 5.3.1.1 Water uptake behaviour 144
 5.3.1.2 Density 144
 5.3.1.3 Surface hardness 145
 5.3.1.4 Tensile behaviour 145
 5.3.1.5 Impact strength 146
5.3.2 Thermal behavior 146
 5.3.2.1 Differential scanning calorimetric studies 147
 5.3.2.2 Dynamic mechanical analysis 149
5.3.2.3 Thermo gravimetric analysis
5.3.3 Wear studies and Sliding wear behavior
 5.3.3.1 Wear loss
 5.3.3.2 Specific wear rate
 5.3.3.3 Co-efficient of friction
 5.3.3.4 Surface morphology of worn surfaces
5.3.4 Regression analysis
 5.3.4.1 Process parameters
5.3.5 Laser assisted etching behaviour
 5.3.5.1 Surface morphology of laser etched surfaces
5.4. Conclusions
5.5 References

6 STUDIES ON MECHANICAL, THERMAL, WEAR AND MORPHOLOGICAL BEHAVIORS OF MOLYBDENUM DISULPHIDE FILLED NYLON 6/CARBON BLACK / COMPOSITES
6.1. Introduction
6.2 Compounding and specimen preparation
6.3 Results and Discussion
 6.3.1 Physico - mechanical properties
 6.3.1.1 Density
 6.3.1.2 Surface hardness
 6.3.1.3 Water uptake behaviour
 6.3.1.4 Tensile behaviour
 6.3.1.5 Impact strength
 6.3.2 Thermal characteristics
 6.3.2.1 Differential scanning calorimetric studies
 6.3.2.2 Dynamic mechanical analysis
 6.3.2.3 Thermo gravimetric analysis
 6.3.3 Sliding wear behavior and specific wear rate
 6.3.3.1 Weight loss
 6.3.3.2 Specific wear rate
6.3.3.3 Coefficient of friction 181
6.3.4 Worn surface studies 184
6.3.5 Regression analysis 185
 6.3.5.1 Process parameters 186
6.3.6 Laser etching behaviour 186
 6.3.6.1 Laser assisted etching 188
 6.3.6.2 Morphology of laser etched surfaces 189
6.4 Conclusions
6.5 References

7 191-213
STUDIES ON PHYSICO-MECHANICAL, THERMAL, WEAR AND MORPHOLOGICAL BEHAVIORS OF NYLON 66 / MOLYBDENUM DISULPHIDE / GLASS FIBRE COMPOSITES
7.1 Introduction 191
7.2 Sample preparation 193
7.3 Results and Discussion 193
 7.3.1 Physico-mechanical properties 194
 7.3.1.1 Density 194
 7.3.1.2 Water absorption behaviour 194
 7.3.1.3 Void content 194
 7.3.1.4 Surface hardness 194
 7.3.1.5 Tensile behaviour 195
 7.3.1.6 Impact strength 196
 7.3.2. Thermal behaviour 196
 7.3.2.1 Differential scanning calorimetry 196
 7.3.2.2 Thermo gravimetric analysis 197
 7.3.2.3 Dynamic mechanical analysis 199
 7.3.3 Wear studies 202
 7.3.3.1 Wear loss 202
 7.3.3.2 Specific wear rate 202
 7.3.3.3 Coefficient of friction 204
 7.3.3.4 Scanning electron microscopy 205
 7.3.4 Regression analysis 207
8 STUDIES ON MECHANICAL, THERMAL, WEAR AND MORPHOLOGICAL BEHAVIOURS OF MOLYBDENUM DISULPHIDE FILLED POLYCARBONATE/CARBON BLACK COMPOSITES

8.1 Introduction
8.2 Compounding and specimen preparation
8.3 Results and Discussion
 8.3.1 Physical properties
 8.3.1.2 Void content
 8.3.1.3 Surface hardness
 8.3.2 Mechanical properties
 8.3.2.1 Tensile behaviour
 8.3.2.2 Impact strength
 8.3.3 Thermal behaviour
 8.3.3.1 Differential scanning calorimetric studies
 8.3.3.2 Thermogravimetric analysis
 8.3.3.3 Dynamic mechanical analysis
 8.3.4 Wear studies
 8.3.4.1 Wear loss
 8.3.4.2 Specific wear rate
 8.3.4.3 Coefficient of friction
 8.3.4.4 Scanning electron microscopic studies
 8.3.5 Regression analysis
 8.3.5.1 Process parameters
 8.3.6 Laser assisted etching behaviour
 8.3.6.1 Morphology of laser etched surfaces
 8.4 Conclusions
 8.5 References
STUDIES ON MECHANICAL, THERMAL, SLIDING WEAR AND MORPHOLOGICAL BEHAVIOURS OF NANOCLAY FILLED POLYPROPYLENE/ULTRAHIGH MOLECULAR WEIGHT POLYETHYLENE/CARBON SHORT FIBER NANOCOMPOSITES

9.1 Introduction 236
9.2 Compounding and specimen preparation 238
9.3 Results and Discussion 238
 9.3.1 Thermal Characteristics 238
 9.3.1.1 Differential scanning calorimetric studies 238
 9.3.1.2 Thermo gravimetric analysis 239
 9.3.2 Wear studies 240
 9.3.2.1 Wear loss 240
 9.3.3.2 Specific wear rate 241
 9.3.3.3 Coefficient of friction 242
 9.3.3.4 SEM studies 244
9.4 Conclusions 245
9.5 References 246

SUMMARY AND SCOPE FOR FUTURE STUDY 248-251
10.1 An overview of present research investigation 249
10.2 Scope for future work 250