List of Tables

1.1 Composition of the atmosphere by percentage volume ... 6
1.2 Types of clouds, their appearance and altitude .. 7
1.3 Typical values and measured ranges of the physical and optical properties of cirrus clouds. ... 14
1.4 The lidar ratio of aerosols and cloud particles corresponding to the wavelength of 532 nm. ... 23

2.1 Main scattering and absorption processes of laser-atmosphere interaction .. 44
2.2 Types of noises in lidar signal .. 66
2.3 Main specifications of the NARL lidar system .. 76

3.1 Cloud base height, cloud top height, cloud base and top temperature and geometrical thickness of clouds observed during the period of study .. 89
3.2 Altitude, extinction, LR, temperature and crystal types of the cirrus during the period of study ... 95
3.3 Ice nucleation calculated at the bottom and top of the cirrus with temperature values 97

4.1 Number of Cirrus observation days at Gadanki stations during the observation period of 2004 to 2008. .. 104
4.2 Derived Cirrus properties of the year 2004. ... 106
4.3 Derived Cirrus properties of the year 2005. ... 107
4.4 Derived Cirrus properties of the year 2006. ... 108
4.5 Derived Cirrus properties of the year 2007. ... 110
4.6 Derived Cirrus properties of the year 2008. ... 112
4.7 Occurrence date with respect to index for Fig. 4.12-4.16 ... 128

5.1 The seasonal variation of geometrical thickness of the clouds for the years 2009 and 2010 .. 153
5.2 Types of hexagonal crystals and their LR and DR ... 165
5.3 Summary of the optical properties of cirrus clouds over Gadanki station during the observation period 2009. .. 166
5.4 Summary of the optical properties of cirrus clouds over Gadanki station during the observation period 2010. .. 167

6.1 CALIOP laser specification. .. 184
6.2 CALIOP spatial resolution of downlinked data ... 185
6.3 Comparison of physical and optical cirrus property obtained from the ground based observation at Gadanki (13.5°N, 79.2°E) and the space borne lidar observation ... 215
List of Figures

1.1 Temperature structure of the Earth atmosphere ... 5
1.2 A generalized illustration of basic cloud types based on height 7
1.3 A summary of aerosol processes and its influence on climate 24
1.4 Global-average radiative forcing (RF) in 2005 with respect to 1750 for CO₂........ 25

2.1 Block diagram of the DIAL system .. 43
2.2 Angular patterns of scattered intensity from particles of three sizes. (a) small particles, (b) large particles, and (c) larger particles. (From Brumberger, (1968)) .. 46
2.3 Three normal modes of vibration of the water vapour molecule 52
2.4 Raman frequency shifts of Q branch of the atmospheric molecules (Hinkley, 1974) ... 54
2.5 Attenuation of light by scattering .. 56
2.6 Geometric optics view of the light ray paths responsible for backscattering from a spherical water drop, contrasted to the internal skew rays for simple plate and column ice crystal models (Liou and Lahore, 1974) ... 58
2.7 Lidar system configurations .. 60
2.8 Basic elements of a monostatic lidar system .. 60
2.9 Schematic diagram of photomultiplier tube .. 65
2.10 Block diagram of the Nd YAG Lidar system at NARL Gadanki 72
2.11 Picture of the laser system, receiver telescope and electronics at the NARL, Gadanki. .. 78

3.1 Cloud top height, bottom height and tropopause height on different dates in the corresponding months ... 90
3.2 Cirrus optical depth on different dates in the corresponding months 91
3.3 Variation of geometrical thickness and optical depth of cirrus clouds with temperature ... 92
3.4 Extinction coefficient with altitude of cirrus clouds observed on different days during the period of study ... 93
3.5 Variation of lidar ratio with altitude for different days of observation 94
3.6 Contour plot of (a) Variation of extinction and depolarisation ratio with altitude (b) Variation of extinction and ice nuclei concentration(INC) with altitude. ... 99

4.1 Monthly occurrence frequency of layered clouds for the periods 2004-2008 104
4.2 Cloud base height, top height, cloud thickness, optical depth, mid cloud temperature for all cloud occurring days in the year 2004. 113
4.3 Cloud base height, top height, cloud thickness, optical depth, mid cloud temperature for all cloud occurring days in the year 2005. 115
4.4 Cloud base height, top height, cloud thickness, optical depth, mid cloud temperature for all cloud occurring days in the year 2006. (Cloud days are given by index as in the table 4.4) 115
4.5 Cloud base height, top height, cloud thickness, optical depth, mid cloud temperature for all cloud occurring days in the year 2007. (Cloud days are given by index as in the table 4.5) 117
4.6 Cloud base height, top height, cloud thickness, optical depth, mid cloud temperature for all cloud occurring days in the year 2008. (Cloud days are given by index as in the table 4.6) 117
4.7 Monthly mean of cirrus base height, top height and tropopause height for the period 2004-2008 ... 118
4.8 Monthly mean of cirrus geometrical thickness during the period 2004-2008 .. 120
4.9 Monthly variation of cirrus optical depth during the period 2004-2008 .. 121
4.10 Seasonal mean of cirrus geometry during the period 2004-2008 123
4.11 Seasonal mean of cirrus optical depth during the period 2004-2008 124
4.12 Cloud base height, top height, cloud thickness, optical depth, mid cloud temperature for all layered cloud occurring days in the year 2004. 125
4.13 Cloud base height, top height, cloud thickness, optical depth, mid cloud temperature for all layered cloud occurring days in the year 2005. 125
4.14 Cloud base height, top height, cloud thickness, optical depth, mid cloud temperature for all layered cloud occurring days in the year 2006. (cloud days are given by index as in the table 4.7) 126
4.15 Cloud base height, top height, cloud thickness, optical depth, mid cloud temperature for all layered cloud occurring days in the year 2007. 126
4.16 Cloud base height, top height, cloud thickness, optical depth, mid cloud temperature for all layered cloud occurring days in the year 2008. 127
4.17(a) Observed mean distribution of the cloud top for tropical cirrus at Gadanki for the period 2004-2008 ... 131
4.17(b) Observed mean distribution of the cloud base for tropical cirrus at Gadanki for the period 2004-2008 ... 131
4.18(a) Occurrence percentage of cirrus cloud optical depth at Gadanki for the period 2004-2008 ... 132
4.18(b) Occurrence percentage of mid cloud temperature for tropical cirrus at Gadanki for the period 2004-2008 ... 132
4.19 Hadley cell position representation over the globe. 134
4.20 The simulated standard pattern of Hadley cell Vortex, ITCZ, and pressure patterns during months of January, June, July September and December ... 134-136
4.21 The pictorial representation of Brewer-Dobson circulation 138
4.22 The Tropical Easterly Jet long-term average 150mb winds for July and August. Courtesy The Pennsylvania State University, Meteorology Department .. 139

4.23 Cirrus Cloud monthly DR during the period of observation 141

5.1 The effective extinction for different months during 2009 and 2010 148
5.2 Monthly variation of cloud base altitude, top altitude and tropopause height. (a) For the year 2009 and (b) for the year 2010 149
5.3 The variation of percentage of occurrence of cirrus clouds of different geometrical thickness (a) for the year 2009 and (b) for the year 2010. 151
5.4 The percentage of occurrence of cirrus clouds as a function of altitude (a) for the year 2009 and (b) for the year 2010. 151
5.5 Seasonal variation of the geometrical properties of the cirrus clouds for the year 2009 and 2010. ... 152
5.6 A typical plot of extinction coefficient profile (for 4th March 2009). 153
5.7 Scatter plot of the asymmetry factor for cirrus clouds on different days (a) observed in the year 2009 and (b) observed in 2010 154
5.8 Scatter plot for the asymmetric factor of the cirrus clouds as a function of altitude (a) in the year 2009 and (b) in the year 2010. 155
5.9 Scatter plot showing the dependence of cloud asymmetry factor on cloud geometric thickness during the year 2009 155
5.10 Monthly average of cloud optical depth and cloud geometrical thickness (a) for the year 2009 and (b) for the year 2010 156
5.11 The variation of cirrus optical depth with temperature. 158
5.12 Scatter plot showing the Multiple scattering factor for the observation periods in the year 2009 and 2010 .. 160
5.13 Contour plot of the monthly evolution of depolarisation ratio of cirrus clouds observed in the year 2009 and 2010 .. 163
5.14(a) Variation of depolarisation ratio with altitude for the period 2009 163
5.14(b) Variation of depolarisation ratio with altitude for the period 2010 163
5.15 (a) The contour plot of the monthly variation of lidar ratio of cirrus cloud observed in the year 2009 .. 165
5.15 (b) The contour plot of the monthly variation of lidar ratio of cirrus cloud observed in the year 2010 .. 165
5.16 (a) The contour plot of the time variation of extinction of cirrus cloud observed on 21/1/2009 .. 168
5.16 (b) The contour plot of the time variation of lidar ratio of cirrus cloud observed on 21/1/2009 .. 168
5.16 (c) The contour plot of the time variation of depolarisation ratio of cirrus cloud observed on 21/1/2009 .. 168
5.17 The contour plot of temporal variation of extinction coefficient, lidar ratio, and depolarisation ratio of cirrus cloud observed during the observational days 1/4/2009, 03/02/2010, 05/05/2010 and 19/11/2010.

5.18 (a) The variation of refractive index with respect to altitude for different days of observation of the year 2009.

5.18 (b) The variation of refractive index with respect to altitude for different days of observation of the year 2010.

5.19 The variation in refractive index factor, lidar ratio, extinction coefficient and depolarisation ratio as a function of altitude for 22-07-2009.

5.20 The variation in refractive index factor, lidar ratio, extinction coefficient and depolarisation ratio as a function of altitude for 17-10-2009.

5.21 The variation in refractive index factor, lidar ratio, extinction coefficient and depolarisation ratio as a function of altitude for observation day 13-10-2010 (a day with atmospheric turbulence).

5.22 The variation in refractive index factor, lidar ratio, extinction coefficient and depolarisation ratio as a function of altitude for observation day 17-02-2010 (a day with atmospheric turbulence).

5.23 The monthly variation of turbidity during the observation periods 2009 and 2010.

6.1 CALIOP transmitter and receiver subsystems.

6.2 The monthly distribution of cloud back scattering during the observation period of 2007.

6.3 The monthly distribution of cloud back scattering during the observation period of 2008.

6.4 The monthly distribution of cloud back scattering during the observation period of 2009.

6.5 The monthly distribution of cloud back scattering during the observation period of 2010.

6.6 The monthly distribution of cloud base height during the observation period of 2008.

6.7 The monthly distribution of cloud optical depth during the observation period of 2007.

6.8 The monthly distribution of cloud optical depth during the observation period of 2008.

6.9 The monthly distribution of cloud optical depth during the observation period of 2009.

6.10 The monthly distribution of cloud optical depth during the observation period of 2010.

6.11 The monthly distribution of cloud depolarisation ratio during the observation period of 2007.

6.12 The monthly distribution of cloud depolarisation ratio during the observation period of 2008.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.13</td>
<td>The monthly distribution of cloud depolarisation ratio during the</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>observation period of 2009</td>
<td></td>
</tr>
<tr>
<td>6.14</td>
<td>The monthly distribution of cloud depolarisation ratio during the</td>
<td>213</td>
</tr>
<tr>
<td></td>
<td>observation period of 2010</td>
<td></td>
</tr>
<tr>
<td>6.15</td>
<td>Comparison of cloud base height, Cloud Optical Depth, Cloud</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>Depolarisation ratio, obtained from CALIPSO measurement and ground</td>
<td></td>
</tr>
<tr>
<td></td>
<td>based lidar for the year 2009</td>
<td></td>
</tr>
<tr>
<td>6.16</td>
<td>CALIOP in- cloud IWC retrievals for the year 2007</td>
<td>217</td>
</tr>
<tr>
<td>6.17</td>
<td>CALIOP in- cloud IWC retrievals for the year 2008</td>
<td>218</td>
</tr>
<tr>
<td>6.18</td>
<td>CALIOP in- cloud IWC retrievals for the year 2009</td>
<td>219</td>
</tr>
<tr>
<td>6.19</td>
<td>CALIOP in- cloud IWC retrievals for the year 2010</td>
<td>220</td>
</tr>
</tbody>
</table>