LIST OF FIGURES

Figure 2.1 Central dogma of molecular biology 14
Figure 2.2 An animal cell (Redrawn from [28]) 15
Figure 2.3 Structure of Nitrogenous bases 19
Figure 2.4 Structure of a nucleotide (Redrawn from [31]) 21
Figure 2.5 Phosphodiester bond (Redrawn from [31]) 22
Figure 2.6 DNA double helix (Redrawn from [32]) 22
Figure 2.7 The peptide bond 28
Figure 2.8 Alpha Helix (Redrawn from [41]) 30
Figure 2.9 Beta Sheet (Redrawn from [41]) 30
Figure 3.1 Structure of eukaryotic gene 42
Figure 3.2 An artificial neural network 61
Figure 3.3 Hidden Markov Model for the motif given in Table 3.4 63
Figure 4.1 Time domain representation of a signal containing 200 and 300 Hz 69
Figure 4.2 Freq. domain representation of a signal containing 200 and 300 Hz 69
Figure 4.3 An illustration of the action of a moving average filter 73
Figure 4.4 Power spectrum of an intron region (2858-4113) of F56F11-4a 85
Figure 4.5 Power spectrum of an exon region (2528-2857) of F56F11-4a 85
Figure 4.6 Power spectrum of an exon region (866-957) of HUMBETGLOA 86
Figure 4.7 Power spectrum of an exon region (1173-1280) of HUMMIF 86
Figure 4.8 Power spectrum of an exon region (1329-1533) of ECZGL1 86
Figure 4.9 Power spectrum of an exon region (247-325) of HUMELAFIN 87
Figure 4.10 Power spectrum of an exon region (4453-5157) of AF008216 87
Figure 4.11 Power spectrum of an exon region (1275-2080) of AF092047 87
Figure 4.12 Power spectrum of an exon region (2732-2789) of AF071216 88
Figure 4.13 Power spectrum of an exon region (792-881) of U55058 88
Figure 4.14 Power spectrum of an exon region (1056-1110) of AF015224 88
Figure 4.15 Power spectrum of an exon region (1062-1074) of AB012668 89
Figure 4.16 Power spectrum of an exon region (3761-4574) of AF019074 90
Figure 4.17  Power spectrum of an exon region (10624-10949) of AB009589
Figure 4.18  Power spectrum of an exon region (6638-6810) of AF065988
Figure 4.19  Power spectrum of an exon region (1713-1900) of AF015224
Figure 4.20  Power spectrum of an exon region (15591-15792) of AB016625
Figure 4.21  Power spectrum of an exon region (2595-3456) of AF013262
Figure 4.22  Power spectrum of an exon region (11112-11533) of AF084941
Figure 4.23  Power spectrum of an exon region (16180-16389) of AF016898
Figure 4.24  Power spectrum of an exon region (7798-8167) of U43842
Figure 4.25  Power spectrum of an exon region (2854-3221) of AF058761
Figure 4.26  Spectrum of F56F11.4a gene of C.Elegans chromosome III
           Obtained using optimization technique
Figure 4.27  The action of an antinotch filter (redrawn from [117])
Figure 4.28  The poles and zeros of the all pass and notch filters
           (Redrawn from [117])
Figure 4.29  Frequency response of the antinotch filter
Figure 4.30  Spectrum of F56F11-4a using Model Independent and Model
           Dependent Filtering Techniques
Figure 4.31  Spectrum of HUMBETGLOA using Model Independent and Model
           Dependent Filtering Techniques
Figure 4.32  Spectrum of MMHOX13 using Model Independent and Model
           Dependent Filtering Techniques
Figure 4.33  Spectrum of HUMCBRG using Model Independent and Model
           Dependent Filtering Techniques
Figure 4.34  Spectrum of HUMMIF using Model Independent and Model
           Dependent Filtering Techniques
Figure 4.35  Spectrum of HSODF2 using Model Independent and Model
           Dependent Filtering Techniques
Figure 4.36  Power spectrum of F56F114a gene using digital filtering
           employing binary and EIIP indicator sequences
Figure 4.37  Power spectrum of HUMBETGLOA using digital filtering
           employing binary and EIIP indicator sequences
Figure 4.38  Power spectrum of HUMELAFIN using digital filtering employing binary and EIIP indicator sequences 120

Figure 4.39  Power spectrum of HSODF2 using digital filtering employing binary and EIIP indicator sequences 120

Figure 4.40  Gain response of Kaiser and rectangular windows 123

Figure 4.41  Power Spectrum of F56F114a obtained through sliding window technique using binary and EIIP indicator sequences 125

Figure 4.42  Power Spectrum of HUMBETGLOA obtained through sliding window technique using binary and EIIP indicator sequences 126

Figure 4.43  Power Spectrum of HUMCBRG obtained through sliding window technique using binary and EIIP indicator sequences 126

Figure 4.44  Power Spectrum of HUMELAFIN obtained through sliding window technique using binary and EIIP indicator sequences 126

Figure 4.45  Power Spectrum of AF042784 obtained through sliding window technique using binary and EIIP indicator sequences 127

Figure 4.46  Power Spectrum of AF008216 obtained through sliding window technique using binary and EIIP indicator sequences 127

Figure 4.47  Power Spectrum of AF009614 obtained through sliding window technique using binary and EIIP indicator sequences 127

Figure 4.48  Power Spectrum of AB003306 obtained through sliding window technique using binary and EIIP indicator sequences 128

Figure 4.49  Power Spectrum of HSODF2 obtained through sliding window technique using binary and EIIP indicator sequences 128
# LIST OF TABLES

| Table 2.1 | Amino acids and their codes | 27 |
| Table 3.1 | Nucleotide Frequency Matrices for Donor and acceptor sites (taken from [53]) | 47 |
| Table 3.2 | Codon Prototype (taken from [57]) | 53 |
| Table 3.3 | A probability matrix for a three periodic First order Markov Model (taken from [57]) | 54 |
| Table 3.4 | A motif represented by a multiple alignment | 63 |
| Table 4.1 | Electron Ion Interaction potentials of nucleotides | 82 |
| Table 4.2 | Examples of exons whose power spectra show good N/3 peaks with both binary indicator sequences and EIIP indicator sequence mapping | 89 |
| Table 4.3 | Examples of exons whose power spectra show better N/3 Peaks with EIIP indicator sequence mapping than with binary indicator sequence mapping | 92 |
| Table 4.4 | Examples of exons whose power spectra show better N/3 peaks with binary indicator sequence mapping than with EIIP indicator sequence mapping. | 95 |
| Table 4.5 | Exon positions of F56F11.4a gene of C.Elegans chromosome III | 99 |
| Table 4.6 | A dinucleotide probability indicator matrix | 107 |
| Table 4.7 | A trinucleotide probability matrix | 108 |
| Table 4.8 | Results of the experiments of testing different schemes of coding measures | 116 |
| Table 4.9 | Results of the experiments comparing the use of EIIP Indicator sequence and binary indicator sequences in existing digital filtering technique of locating exons | 121 |
| Table 4.10 | Results of the comparison of sliding window technique of locating exons | 129 |
| Table 4.11 | Results showing the discrimination capability of coding | }
measures to isolate ‘false’ genes when employed to find
single genes

Table 4.12 Details of genes predicted by the procedure described in
section 4.11
\[
\sum_{n=0}^{N-1} u_x[n] e^{-j2\pi kn / N}
\]