CONTENTS

Abstract i
List of figures iv
List of tables vii

1. INTRODUCTION 1-5
2. OVERVIEW OF MEMS 6-16
 2.1 MEMS and Microsystems 6
 2.2 Materials for MEMS 8
 2.3 MEMS Fabrication process 10
 2.4 Micro Machining Techniques 13
3. INERTIAL ACCELEROMETERS 17-37
 3.1 Introduction 17
 3.2 Requirements for Navigation Systems for Launch Vehicles 24
 3.3 Capacitive Sensing Accelerometer 26
 3.4 Accelerometer and signal conditioning 30
 3.5 Accelerometer modeling 32
4. DESIGN OF MICRO STRUCTURE 38-51
 4.1 Design, analysis and optimization of silicon microstructure for Navigational grade MEMS Accelerometer 38
 4.2 Comparative study on various microstructure configurations for Navigational grade MEMS Accelerometer 47
5. DESIGN AND OPTIMIZATION OF BULK MICROMACHINED ACCELEROMETER 52-60
6. DESIGN AND ANALYSIS OF HIGH PERFORMANCE DIFFERENTIAL CAPACITANCE READOUT CIRCUIT 61-66
7. CHARACTERIZATION AND NON-LINEARITY COMPENSATION OF CAPACITIVE SENSING MEMS ACCELEROMETER 67-90
 7.1 Non-linearity compensation Algorithm design 67
 7.2 FPGA implementation of non-linearity compensation 73
8. DESIGN AND IMPLEMENTATION OF 200 Hz FILTER AND DESIGN OF MIL-STD-1553B BUS INTERFACE CIRCUIT 91-114
 8.1 Design and implementation of 200 Hz digital filter 91
 8.2 Design of MIL-STD-1553B Bus Interface circuit 100
9. MEMS PACKAGING 115-120
10. CONCLUSION 121-122
FUTURE DIRECTIONS 123
References 124-126
Appendix 1 Codes for FPGA implementation of non-linearity compensator