TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER No.</th>
<th>TITLE</th>
<th>PAGE No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 POWER SYSTEM STABILITY</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 CLASSIFICATION OF POWER SYSTEM OSCILLATIONS</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.2.1 Problem Description</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.2.2 Damping of Power System Oscillations</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.3 MOTIVATION</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.4 OBJECTIVE OF THE THESIS</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.5 ORGANISATION OF THE THESIS</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE SURVEY</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>POWER SYSTEM MODEL FOR LOW FREQUENCY OSCILLATION STUDIES</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>3.1 MODELING OF POWER SYSTEM COMPONENTS</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>3.1.1. Modeling of synchronous generator</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>3.1.2. Modeling of Excitation System</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>3.1.3 Modeling of Transmission Line</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>3.2. POWER SYSTEM STABILIZER</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>3.3. COMPLETE LINEARIZED MODEL</td>
<td>31</td>
</tr>
<tr>
<td>CHAPTER No.</td>
<td>TITLE</td>
<td>PAGE No.</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>3.4</td>
<td>MULTIMACHINE TRANSFER FUNCTION MODEL</td>
<td>33</td>
</tr>
<tr>
<td>3.5.</td>
<td>POWER SYSTEM MODELLING FOR WIND POWER GENERATION</td>
<td>34</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Modelling of Induction Machine</td>
<td>34</td>
</tr>
<tr>
<td>3.6</td>
<td>CONVENTIONAL PSS DESIGN</td>
<td>37</td>
</tr>
<tr>
<td>3.7</td>
<td>SUMMARY</td>
<td>37</td>
</tr>
<tr>
<td>4</td>
<td>NEURO-FUZZY LOGIC CONTROLLER</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>FUZZY LOGIC CONTROLLER</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>CONFIGURATION OF FLC</td>
<td>39</td>
</tr>
<tr>
<td>4.2.1.</td>
<td>Fuzzification and membership functions</td>
<td>40</td>
</tr>
<tr>
<td>4.2.2.</td>
<td>Rules Creation and Inference</td>
<td>42</td>
</tr>
<tr>
<td>4.2.3.</td>
<td>Defuuzzification</td>
<td>43</td>
</tr>
<tr>
<td>4.3</td>
<td>ARTIFICIAL NEURAL NETWORKS</td>
<td>43</td>
</tr>
<tr>
<td>4.4</td>
<td>ARTIFICIAL NEURON MODEL</td>
<td>44</td>
</tr>
<tr>
<td>4.5</td>
<td>NEURAL NETWORK CONNECTIONS</td>
<td>45</td>
</tr>
<tr>
<td>4.6</td>
<td>LEARNING IN ANN</td>
<td>46</td>
</tr>
<tr>
<td>4.7.</td>
<td>BACK PROPAGATION LEARNING ALGORITHM</td>
<td>47</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Training with Back propagation Algorithm</td>
<td>47</td>
</tr>
<tr>
<td>4.8.</td>
<td>ADAPTIVE NEURO-FUZZY CONTROLLERS</td>
<td>51</td>
</tr>
<tr>
<td>4.9.</td>
<td>ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM ARCHITECTURE</td>
<td>51</td>
</tr>
<tr>
<td>4.10</td>
<td>HYBRID LEARNING ALGORITHM</td>
<td>54</td>
</tr>
<tr>
<td>4.11</td>
<td>SUMMARY</td>
<td>55</td>
</tr>
<tr>
<td>CHAPTER No.</td>
<td>TITLE</td>
<td>PAGE No.</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>5</td>
<td>ADAPTIVE NEURO-FUZZY LOGIC BASED PSS</td>
<td>56</td>
</tr>
<tr>
<td>5.1</td>
<td>ADAPTIVE NEURO – FUZZY BASED PSS DESIGN</td>
<td>57</td>
</tr>
<tr>
<td>5.2</td>
<td>ANFPSS TRAINING</td>
<td>59</td>
</tr>
<tr>
<td>5.3</td>
<td>ANFPSS APPLIED IN MULTIMACHINE SYSTEM</td>
<td>63</td>
</tr>
<tr>
<td>5.4</td>
<td>SIMULATION STUDIES</td>
<td>63</td>
</tr>
<tr>
<td>5.5</td>
<td>NFPSS FOR WIND TURBINE MODEL</td>
<td>79</td>
</tr>
<tr>
<td>5.5.1</td>
<td>NFPSS Architecture</td>
<td>80</td>
</tr>
<tr>
<td>5.6</td>
<td>CASE STUDIES</td>
<td>83</td>
</tr>
<tr>
<td>5.7</td>
<td>SUMMARY</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>HIERARCHICAL NEURO-FUZZY BASED PSS DESIGN</td>
<td>90</td>
</tr>
<tr>
<td>6.1</td>
<td>HIERARCHICAL FUZZY LOGIC CONTROLLERS</td>
<td>91</td>
</tr>
<tr>
<td>6.2</td>
<td>HIERARCHICAL NEURO-FUZZY BASED PSS DESIGN</td>
<td>92</td>
</tr>
<tr>
<td>6.3</td>
<td>SIMULATION STUDIES</td>
<td>96</td>
</tr>
<tr>
<td>6.4</td>
<td>SUMMARY</td>
<td>111</td>
</tr>
<tr>
<td>7</td>
<td>GENETIC ALGORITHM OPTIMIZED TS-FUZZY CONTROLLED PSS</td>
<td>112</td>
</tr>
<tr>
<td>7.1</td>
<td>GA IN TS-FUZZY LOGIC CONTROLLER DESIGN</td>
<td>112</td>
</tr>
<tr>
<td>7.2</td>
<td>FLC-GA BASED STRUCTURAL OPTIMIZATION</td>
<td>114</td>
</tr>
<tr>
<td>7.3</td>
<td>GENETIC NEURO-FUZZY PSS</td>
<td>116</td>
</tr>
<tr>
<td>7.3.1</td>
<td>GNFPSS Architecture</td>
<td>116</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Learning Algorithm of TS-Fuzzy Scheme</td>
<td>118</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Genetic Optimization of TS-Fuzzy Scheme</td>
<td>118</td>
</tr>
<tr>
<td>7.4</td>
<td>SIMULATION STUDIES</td>
<td>123</td>
</tr>
<tr>
<td>7.5</td>
<td>SUMMARY</td>
<td>139</td>
</tr>
<tr>
<td>CHAPTER No.</td>
<td>TITLE</td>
<td>PAGE No.</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>8</td>
<td>SWARM-INTELLIGENCE TUNED TS-FUZZY PSS DESIGN FOR DAMPING LOW FREQUENCY OSCILLATIONS</td>
<td>140</td>
</tr>
<tr>
<td>8.1</td>
<td>PSO IN TS-FUZZY LOGIC CONTROLLER DESIGN</td>
<td>141</td>
</tr>
<tr>
<td>8.2</td>
<td>PSO TUNED FUZZY STRUCTURE OPTIMIZATION</td>
<td>141</td>
</tr>
<tr>
<td>8.3</td>
<td>SWARM INTELLIGENT NEURO-FUZZY PSS</td>
<td>142</td>
</tr>
<tr>
<td>8.3.1</td>
<td>SNFPSS Architecture</td>
<td>143</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Swarm Intelligent Optimization of TS-Fuzzy PSS</td>
<td>145</td>
</tr>
<tr>
<td>8.4</td>
<td>SIMULATION STUDIES</td>
<td>150</td>
</tr>
<tr>
<td>8.5</td>
<td>SUMMARY</td>
<td>166</td>
</tr>
<tr>
<td>9</td>
<td>SIMULATED ANNEALING OPTIMIZED TS-FUZZY CONTROLLED PSS</td>
<td>167</td>
</tr>
<tr>
<td>9.1</td>
<td>SA IN TS-FUZZY LOGIC CONTROLLER DESIGN</td>
<td>167</td>
</tr>
<tr>
<td>9.2</td>
<td>SIMULATED ANNEALING TUNED TS-FUZZY PSS</td>
<td>170</td>
</tr>
<tr>
<td>9.2.1</td>
<td>SANFPSS Architecture</td>
<td>170</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Simulated Annealing based Optimization of TS-Fuzzy PSS</td>
<td>172</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Formulation of Objective Function</td>
<td>174</td>
</tr>
<tr>
<td>9.3</td>
<td>SIMULATION STUDIES</td>
<td>178</td>
</tr>
<tr>
<td>9.4</td>
<td>SUMMARY</td>
<td>194</td>
</tr>
</tbody>
</table>
10 BACTERIA FORAGING TUNED TS-FUZZY PSS DESIGN FOR DAMPING LOW FREQUENCY OSCILLATIONS 195

10.1 BFA IN TS-FUZZY LOGIC CONTROLLER DESIGN 196

10.2 BACTERIA FORAGING TUNED TS-FUZZY PSS 196

10.2.1 BNFPSS Architecture 198

10.2.2 Bacteria Foraging based Optimization of TS-Fuzzy PSS 200

10.2.3. Formulation of Objective Function 202

10.2.4 Steps involved in bacterial foraging algorithm 202

10.3 SIMULATION STUDIES 208

10.4 SUMMARY 223

11 COMPARATIVE PERFORMANCE ANALYSIS 224

12 CONCLUSION 232

12.1 FUTURE WORK 234

APPENDIX I - Linearization System Model for Low frequency Oscillation studies in a Power System Network 235

APPENDIX II- Supplementary Excitation Control Design 247

APPENDIX III- Three Machine Nine Bus Power System Data 253

APPENDIX IV- Multimachine MATLAB Simulink Model 255

APPENDIX V- Wind System Induction Machine Parameters 256

REFERENCES 258

CURRICULUM VITAE 271