CONTENTS

Abstract

1 Introduction ... 1
 1.1 Decision Making 1
 1.1.1 Relevance of Decision Making 2
 1.1.2 Medical Decision Making - An Emerging Need 2
 1.1.3 Machine Learning Methods in Medical Decision Making 4
 1.1.4 Uncertainty of Decision Making in Real World Application 4
 1.2 Expert Systems 5
 1.2.1 Scope of Expert Systems in Medical Decision Making .. 6
 1.2.2 Knowledge Representation with Expert Systems 6
 1.3 An Overview of Related Prior Research 7
 1.3.1 The Decision Tree Approach 8
 1.3.2 The Fuzzy Logic Approach 10
 1.3.3 The Artificial Neural Networks Approach 17
 1.3.4 The Genetic Algorithms Approach 24
 1.4 Integrated Decision Support Systems in Medical Field 26
 1.4.1 Decision Tree and Genetic Algorithms 26
 1.4.2 Decision Tree and Fuzzy Logic 27
 1.4.3 Fuzzy Logic and Neural Networks 28
 1.4.4 Neural Networks and Genetic Algorithms 32
 1.4.5 Decision Tree, Fuzzy Logic and Neural Networks 33
 1.5 Neuro-Fuzzy Decision Tree Model 34
 1.6 Objective of the Study 34
 1.7 Organization of the Thesis 35

2 Methods of Decision Making 37
 2.1 Decision Tree - An Overview 37
 2.1.1 Design of a Decision Tree Classifier 38
 2.1.2 ID3 Algorithm Strategy 40
 2.1.3 Sample Decision Tree 40
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.4 Applications of Decision Tree Approach</td>
<td>43</td>
</tr>
<tr>
<td>2.2 Fuzzy Logic</td>
<td>44</td>
</tr>
<tr>
<td>2.2.1 Linguistic Terms</td>
<td>45</td>
</tr>
<tr>
<td>2.2.2 Basic Operations</td>
<td>45</td>
</tr>
<tr>
<td>2.2.3 IF-THEN Rulebase</td>
<td>47</td>
</tr>
<tr>
<td>2.2.4 Fuzzification and Defuzzification Inferences</td>
<td>48</td>
</tr>
<tr>
<td>2.2.5 Fuzzy Inference Systems</td>
<td>49</td>
</tr>
<tr>
<td>2.2.6 Applications of Fuzzy Logic</td>
<td>51</td>
</tr>
<tr>
<td>2.3 Artificial Neural Networks</td>
<td>51</td>
</tr>
<tr>
<td>2.3.1 Feedforward and Feedback Networks</td>
<td>53</td>
</tr>
<tr>
<td>2.3.2 Multilayer Feedforward Networks</td>
<td>53</td>
</tr>
<tr>
<td>2.3.3 Learning Methods</td>
<td>54</td>
</tr>
<tr>
<td>2.3.4 Backpropagation Learning Rule</td>
<td>55</td>
</tr>
<tr>
<td>2.3.5 Applications of Neural Networks</td>
<td>56</td>
</tr>
<tr>
<td>2.4 Genetic Algorithms</td>
<td>56</td>
</tr>
<tr>
<td>2.4.1 Fitness Evaluation</td>
<td>57</td>
</tr>
<tr>
<td>2.4.2 Selection</td>
<td>58</td>
</tr>
<tr>
<td>2.4.3 Crossover</td>
<td>60</td>
</tr>
<tr>
<td>2.4.4 Mutation</td>
<td>61</td>
</tr>
<tr>
<td>2.4.5 Termination Criteria</td>
<td>62</td>
</tr>
<tr>
<td>2.4.6 Applications of Genetic Algorithms</td>
<td>62</td>
</tr>
<tr>
<td>2.5 Hybrid Systems</td>
<td>63</td>
</tr>
<tr>
<td>2.5.1 Hybrid Learning Rules</td>
<td>63</td>
</tr>
<tr>
<td>2.5.2 Neuro-Fuzzy Hybrid Systems</td>
<td>64</td>
</tr>
<tr>
<td>2.6 Need of Developing a New Model</td>
<td>64</td>
</tr>
<tr>
<td>3 A Study on Acute Myocardial Infarction</td>
<td>66</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>66</td>
</tr>
<tr>
<td>3.2 Risk Factors of Coronary Heart Disease</td>
<td>68</td>
</tr>
<tr>
<td>3.2.1 Non-Modifiable Risk Factors</td>
<td>69</td>
</tr>
<tr>
<td>3.2.2 Modifiable Risk Factors</td>
<td>70</td>
</tr>
<tr>
<td>3.3 Relevance of the Acute Myocardial Infarction Study</td>
<td>74</td>
</tr>
<tr>
<td>3.4 Case-Control Study</td>
<td>75</td>
</tr>
</tbody>
</table>
3.5 Data Collection ... 76
 3.5.1 Study Population .. 76
 3.5.2 Control Population 77
 3.5.3 Documentation of Patient Information 77
3.6 Preparation for Data Analysis 78
 3.6.1 Feature Selection .. 78
 3.6.2 Risk Calculation ... 78
 3.6.3 Data Normalization 80
 3.6.4 Data Analysis ... 80
3.7 Conclusion .. 81

4 A Learning System based on Rules Generated from
 Neuro-Fuzzy Decision Tree 82
 4.1 Introduction .. 82
 4.2 Fuzzy Decision Tree 83
 4.2.1 Parameters in Fuzzy Form 84
 4.2.2 Pattern Representation in Linguistic Variables 86
 4.2.3 Rules Representation 90
 4.2.4 Performance Criteria of Fuzzy Decision Tree 91
 4.2.5 Role of Fuzzy Decision Tree in NFDTRL System 97
 4.3 NFDTRL Architecture 98
 4.3.1 First Stage of Learning 100
 4.3.1.1 Design of the Structure 101
 4.3.1.2 Optimization of Rules 106
 4.3.1.3 Error Function 107
 4.3.1.4 Updation of Parameters 108
 4.3.1.5 Selection Criteria for Optimized Rules 110
 4.3.2 Effect of First Stage Learning 110
 4.3.3 Second Stage of Learning 111
 4.3.3.1 Design of the Model 112
 4.4 Improved Version of NFDTRL System 115
 4.5 Model Validation Methods 118
 4.5.1 Cross Validation with Control Data 119
4.5.2 k-Fold Cross Validation with Training Data 119
4.5.3 Validation with Training Data using Dummy Values ... 120
4.6 Conclusion ... 120
5 Application to Medical Domain 122
 5.1 Case Study I: Using Case-Control Data 123
 5.1.1 Description of CAD Data 123
 5.1.2 Experimental Procedures and Simulation Results 123
 5.1.3 Comparing NFDTRL with NFDT Model 136
 5.2 Case Study II: Using SCTIMST CAD Data 138
 5.2.1 Experiments and Simulation Results 138
 5.2.2 Comparing NFDTRL with NFDT Model 141
 5.3 Case Study III: Using Global Data 142
 5.3.1 Validation Results with Cleveland Data 142
 5.3.2 A Comparative Study of Models 144
 5.4 Simulation Results of the Improved NFDTRL Model 146
 5.5 Advantages of NFDTRL System 148
6 Conclusion and Discussion 150

References
Appendix A
Appendix B