ANNEXURE

(1) Economic Value Added

\[EVA = \text{ADJUSTED NET PROFIT} - \text{WACC} \times \text{Capital Employed} \]

(2) Weighted Average Cost of Capital

\[\text{WACC} = \left(\frac{\text{net worth}}{\text{total assets}} \right) \times \text{Ke} + \left(\frac{\text{total external liabilities}}{\text{total Liabilities}} \right) \times \text{Kd} \]

Where \(\text{Ke} = \text{Cost of Equity} \)

\(\text{Kd} = \text{Cost of Debt} \)

(3) Cost of Perpetual Debt

\[K_i = \frac{I}{P} \times 100 \]

Where \(I = \text{Interest annual} \),

\(P = \text{Net amount received} \),

\(K_i = \text{Cost of debt} \)

Cost of Debt after tax \(K_d = I \times (1 - t) \) or \(K_i \times (1 - t) \)

Where \(I = \text{Interest payable} \)

\(t = \text{tax rate} \)

Specific Cost of Debt

\[K_d = \frac{\text{Total interest}}{\text{Total debt}} \times (1 - t) \]

Where \(K_d = \text{cost of debt after tax} \)

\[t = \text{tax rate} = \frac{\text{Total tax paid}}{\text{EBIT} - I} \]

Where, EBIT = Earnings Before interest and Tax.

\(I = \text{Total Interest} \)
(4) **Dividend Yield Method for COE**

\[KE = \frac{D_1}{PE} \]

Where
- **KE** = Cost of Equity
- **D_1** = Annual Dividend per share
- **PE** = Ex-dividend market price per share

(5) **Dividend Growth Model**

\[KE = \frac{D_1}{PE} + g \]

Where
- **D_1** = Current dividend per Equity share
- **PE** = Market price per equity share
- **g** = Growth in expected dividend

(6) **Price Earning Method**

\[KE = \frac{E}{M} \]

Where
- **E** = Current earnings per share
- **M** = Market price per share

(7) **Capital Asset Pricing Model**

\[R_j = R_f + \beta_j \times (R_m - R_f) \]

Where
- **R_j** = the expected rate of return on security j
- **R_f** = Risk – free rate of interest
- **\beta_j** = The beta co-efficient of systematic risk of security j
- **R_m** = The Expected rate of return on the market portfolio of Securities

(8) **Beta Coefficient**

\[\beta_i = \frac{\text{cov}(r_i, r_M)}{\text{var}(r_M)} \]

Where
- **\beta_i** = Beta value of Security i
- **r_i** = Stock return of Security i
- **r_m** = Market return of Security i
(9) Average
\[
\bar{X} = \frac{\sum X}{n}
\]
Where \(\bar{X} \) = Average of sample
\(\sum X \) = summation of sampled companies
\(n \) = number of companies

(10) S.D.
\[
\sigma = \sqrt{\frac{\sum (X - \bar{X})^2}{n-1}}
\]

(11) Coefficient of Variance
\[
C.V. = \frac{\sigma}{\bar{X}} \times 100
\]
Where C.V. = Coefficient of Variance
\(\sigma \) = Standard Deviation
\(\bar{X} \) = Mean of Sample Company

(12) Slope
\[
M = \frac{Y_2 - Y_1}{X_2 - X_1}
\]
Where M = Slope of two variables
\(Y_2 \) = today’s stock price
\(Y_1 \) = yesterday’s stock price
\(X_2 \) = today’s sensex price
\(X_1 \) = yesterday’s sensex price

(13) Return
\[
R_t = \frac{P_t - P_0}{P_0}
\]
Where \(R_t \) = Rate of Return
\(P_t \) = Today’s Stock Price
\(P_0 \) = Yesterday’s Stock Price