CONTENTS

I. INTRODUCTION
1.1. General introduction
 1.1.1. Definition of Glass
 1.1.2. Inorganic oxide glass and borate glass
 1.1.3. Optical properties of glasses
1.2. Optical absorption and fluorescence
 1.2.1. UV-Absorption: Fundamental absorption edge
1.3. Review of literature
References

II. EXPERIMENTAL
2.1. Glass preparation
2.2. Absorption spectra
2.3. Emission Spectra
References

III. THEORY
3.1. Optical absorption
 3.1.1. Energy level calculations
 3.1.2. Spectral intensities
 3.1.3. Hypersensitive transitions
 3.1.4. Radiative and non-radiative properties
3.2. Emission cross sections
3.3. UV- Absorption-optical band gap
References

IV. OPTICAL ABSORPTION AND EMISSION PROPERTIES OF Sm³⁺ IN MIXED ALKALI BORATE GLASSES
4.1. Introduction
4.2. Experimental
4.3. Optical absorption and emission properties of Sm³⁺ in lithium sodium mixed alkali borate glasses
Results and analysis

4.3.1. Absorption properties

4.3.2. Emission properties

4.3.3. Absorption edges and optical band gaps

4.4. Optical absorption and emission properties of Sm$^{3+}$ in lithium potassium mixed alkali borate glasses

Results and analysis

4.4.1. Absorption properties

4.4.2. Emission properties

4.4.3. Absorption edges and optical band gaps

4.5. Optical absorption and emission properties of Sm$^{3+}$ in lithium cesium mixed alkali borate glasses

Results and analysis

4.5.1. Absorption properties

4.5.2. Emission properties

4.5.3. Absorption edges and optical band gaps

4.6. Optical absorption and emission properties of Sm$^{3+}$ in sodium potassium mixed alkali borate glasses

Results and analysis

4.6.1. Absorption properties

4.6.2. Emission properties

4.6.3. Absorption edges and optical band gaps

4.7. Conclusions

References

V. OPTICAL ABSORPTION AND EMISSION PROPERTIES OF Dy$^{3+}$ IN MIXED ALKALI BORATE GLASSES

5.1. Introduction

5.2. Experimental

5.3. Optical absorption and emission properties of Dy$^{3+}$ in lithium sodium mixed alkali borate glasses

Results and analysis

5.3.1. Absorption properties

5.3.2. Emission properties
5.4. Optical absorption and emission properties of Dy\(^{3+}\) in lithium potassium mixed alkali borate glasses

Results and analysis

5.4.1. Absorption properties

5.4.2. Emission properties

5.5. Optical absorption and emission properties of Dy\(^{3+}\) in lithium cesium mixed alkali borate glasses

Results and analysis

5.5.1. Absorption properties

5.5.2. Emission properties

5.6. Optical absorption and emission properties of Dy\(^{3+}\) in sodium potassium mixed alkali borate glasses

Results and analysis

5.6.1. Absorption properties

5.6.2. Emission properties

5.7. Conclusions

References

VI. OPTICAL ABSORPTION AND EMISSION PROPERTIES OF Ho\(^{3+}\) IN MIXED ALKALI BORATE GLASSES

6.1. Introduction

6.2. Experimental

6.3. Optical absorption and emission properties of Ho\(^{3+}\) in lithium sodium mixed alkali borate glasses

Results and analysis

6.3.1. Absorption properties

6.3.2. Emission properties

6.3.3. Absorption edges and optical band gaps

6.4. Optical absorption and emission properties of Ho\(^{3+}\) in lithium potassium mixed alkali borate glasses

Results and analysis

6.4.1. Absorption properties

6.4.2. Emission properties

6.4.3. Absorption edges and optical band gaps
6.5. Optical absorption properties of Ho\(^{3+}\) in lithium cesium mixed alkali borate glasses

Results and analysis

6.5.1. Absorption properties

6.6. Conclusions

References

VII. OPTICAL ABSORPTION PROPERTIES OF Tm\(^{3+}\) IN SODIUM POTASSIUM MIXED ALKALI BORATE GLASSES

7.1. Introduction

7.2. Experimental

7.3 Results and analysis

7.3.1. Absorption properties

7.3.2. Absorption edges and optical band gaps

7.4. Conclusions

References