Contents

Preface x

List of Figures xv

1 Preliminaries 1
 1.1 Introduction ... 1
 1.2 Basic Concepts and Theorems 1
 1.3 Definitions and Results of Decomposition of Graphs 6
 1.4 Definitions and Theorems of Least Common Multiples of Graphs 7
 1.5 Preliminary Results on Decomposition and The Size of a Least Common Multiple 11

2 On $B_{m,n}$ Decomposable Graphs 16
 2.1 Introduction ... 16
 2.2 A Bi-star - $B_{m,n}$ 16
 2.3 Decomposition of $B_{m,n}$ 17
 2.4 Some $B_{m,n}$ Decomposable Graphs 19
 2.5 Decomposition of $C_s + (m + n)K_1$ 24
 2.6 Decomposition of the Complement of $B_{m,n}$ 31

3 Least Common Multiples Of Bi-star Versus Other Graphs 43
 3.1 Introduction ... 43
 3.2 Size of a Least Common Multiple of Bi-stars Versus a Graph Having Fixed Size 43
3.3 Size of a Least Common Multiple of Bi-stars Versus More Graphs Having Fixed Size ... 47
3.4 Size of a Least Common Multiple of Paths Versus other Graphs Having Fixed Size ... 61

4 Least Common Multiples Of Odd Cycles And Stars 67
4.1 Introduction ... 67
4.2 Survey of Least Common Multiple of an Odd Cycle and a Star .. 67
4.3 Construction of a Graph $G_{d}^{2n+1, pd}$ where
\[2n + 1 = qd \text{ and } q|p \text{ with } p > \frac{2n+1}{2}.......................... 69
4.4 Construction of a Graph $G_{r}^{2n+1, \frac{d+1}{2}(2n+1)}$ where $d = \gcd(2n+1, r)$
with $1 \leq r \leq 2n + 1 ... 71
4.5 Construction of a Graph $G_{r}^{2n+1, r(2n+1)}$ where
\[2n + 1 < r < 2(2n + 1) ... 76
4.6 Construction of a Graph $G_{r}^{2n+1, kqr}$ with
\[|W_{r+2}| = k\left(\frac{q+1}{2}\right), |W_{r}| = k\left(\frac{q-1}{2}\right) \text{ where } r = 2n+1+d 84
4.7 Construction of a Graph $G_{r}^{2n+1, kqr}$, where
\[2n + 1 = qd \text{ and } r = 2n + 1 + bd \text{ with } b < q. 87
4.8 Construction of a Graph $G_{r}^{2n+1, kqr}$, where k is even, $2n + 1 = qd$, and
\[r = \left(\frac{q}{2} - 1\right)(2n+1) + bd. 97
4.9 The Size of a Least Common Multiple of Odd Cycles Versus Stars .. 102

5 On The Bounds For lcm Of Bi-star Versus Other Graphs 106
5.1 Bounds for Sizes of Least Common Multiples of Bi-star Versus Some Classes of Graphs 106
5.2 Bounds for Least Common Multiple of Paths Versus Bi-stars .. 108
5.3 Bounds for Least Common Multiples of Cycles Versus Bi-stars .. 117
5.4 Least Common Multiple of $B_{m,n}$ and rK_{2} ... 123
5.5 Least Common Multiple of any Graph G and rK_{2} ... 126
6 On Least Common Multiples of Even Cycles Versus Bi-stars 128

6.1 Introduction ... 128

6.2 Construction of a Graph $G_{d+1,d-1}^{r, \frac{r+1}{2}}$ with
$|W_{d+1}| = |W_{d-1}| = \frac{d+1}{4} r$, where $d \equiv 3(mod 4)$ 129

6.3 Construction of a Graph $G_{y, z}^{r, \frac{d+1}{2}}$, where
$M = \mathbb{N}$ and $d \equiv 3(mod 4)$ 132

6.4 Construction of a Graph $G_{d+x-t, d-x+t}^{r, \frac{d+x}{2}}$, where $d + x \equiv 0(mod 4)$ with
$1 < x \leq d$ and $t = \{0, 2, 4\}$ 134

6.5 Construction of $G_{y, z}^{r, \frac{d+x}{2}}$, where $M = \mathbb{N}$ and $d + x \equiv 0(mod 4)$ with
$1 < x \leq d$... 138

6.6 $B_{m,n}$ and C_{r} Decomposable Graphs of Size tr, where $m + n + 1 = 3t$,
$1 \leq t \leq \frac{r}{3}$ and $r \equiv 0(mod 6)$ 141

6.7 $B_{m,n}$ and C_{r} Decomposable Graphs of Size $\frac{d+x}{4} r$ where $m + n + 1 = d$,
$r \equiv 0(mod d)$ and $1 \leq x < d$ 143

6.8 $B_{m,n}$ and C_{r} Decomposable Graphs of Size $3r \frac{d+1}{4}$ where $m + n + 1 = 3d$
and $r \equiv 0(mod d)$... 152

6.9 On the Size of Least Common Multiples of Even Cycles Versus Bi-stars 154

Conclusion .. 164

Glossary of Terms .. 166

List of Presentations ... 169

Bibliography .. 170