CONTENTS

Chapter 1

INTRODUCTION

1.1 Health and health parameters 1

1.2 Physics of sound 4

1.3 Anatomy and Physiology of the heart 5

1.3.1 Anatomy of heart 5

1.3.2 Physiology of heart 11

1.3.3 Heart and heart functionality 12

1.4 Cardiac cycle 14

1.5 Murmurs and its types 15

1.6 Techniques available for heart monitoring 17

1.6.1 Electrocardiogram (ECG) 17

1.6.2 Treadmill stress test (TMT) 19

1.6.3 Echocardiogram 20

1.6.4 Acoustic based heart analysis (Phonocardiogram) 21

1.7 PCG and reported works 22

1.7.1 PCG heart signal 24

1.7.2 Methodology 25

References 26

Chapter 2

DEVELOPMENT OF DATA ACQUISITION SYSTEM USING PCG

2.1 Introduction 29

2.2 Support Vector Machines (SVM) 32

2.2.1 SVM Classifier 32

2.3 Performance measures and algorithm 33

2.4 Periodicity detection 33

2.5 Largest Eigen value based dimensional reduction 35

2.6 Hardware development and implementation of PCG 36

2.6.1 Methodology 36
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.2. Development of Phonocardiograph</td>
<td></td>
</tr>
<tr>
<td>2.6.2.1. Transducer/Microphone</td>
<td>39</td>
</tr>
<tr>
<td>2.6.2.2. Preamplifier</td>
<td>40</td>
</tr>
<tr>
<td>2.6.2.3. Low pass filter</td>
<td>41</td>
</tr>
<tr>
<td>2.6.2.4. Volume controller</td>
<td>42</td>
</tr>
<tr>
<td>2.6.2.5. Audio amplifier</td>
<td>42</td>
</tr>
<tr>
<td>2.6.2.6. Power supply</td>
<td>43</td>
</tr>
<tr>
<td>2.7 Earlier Literature survey on PCG systems</td>
<td>46</td>
</tr>
<tr>
<td>2.7.1 Reported works.</td>
<td>46</td>
</tr>
<tr>
<td>References</td>
<td>87</td>
</tr>
<tr>
<td>Chapter 3</td>
<td></td>
</tr>
<tr>
<td>SOFTWARE DEVELOPMENT FOR PCG MURMUR CLASSIFICATION</td>
<td></td>
</tr>
<tr>
<td>3.1 Sound signal conversion into image form.</td>
<td>96</td>
</tr>
<tr>
<td>3.2 Heart Murmur Identification</td>
<td>97</td>
</tr>
<tr>
<td>3.2.1 Similarity</td>
<td>99</td>
</tr>
<tr>
<td>3.2.2 Typicality</td>
<td>99</td>
</tr>
<tr>
<td>3.2.3 Reference sample</td>
<td>99</td>
</tr>
<tr>
<td>3.2.4 A likelihood ratio formula</td>
<td>99</td>
</tr>
<tr>
<td>3.2.5 Audacity software</td>
<td>101</td>
</tr>
<tr>
<td>3.2.5.1 Features of Audacity</td>
<td>101</td>
</tr>
<tr>
<td>3.2.5.2 Removing any DC offset (if present)</td>
<td>103</td>
</tr>
<tr>
<td>3.3 Hamming distance method</td>
<td>103</td>
</tr>
<tr>
<td>3.3.1 Hamming distance algorithm.</td>
<td>103</td>
</tr>
<tr>
<td>3.4 Implementation of classifier</td>
<td>104</td>
</tr>
<tr>
<td>3.5 Augmented Reality</td>
<td>104</td>
</tr>
<tr>
<td>3.5.1 Target image</td>
<td>104</td>
</tr>
<tr>
<td>3.5.2 Unity SDK</td>
<td>105</td>
</tr>
<tr>
<td>3.5.3 Device database and cloud database</td>
<td>105</td>
</tr>
<tr>
<td>3.5.4 Unity</td>
<td>105</td>
</tr>
<tr>
<td>3.5.5 Folder structure of Unity</td>
<td>105</td>
</tr>
<tr>
<td>3.5.5.1 Assets</td>
<td>105</td>
</tr>
<tr>
<td>3.5.5.2 Editor</td>
<td>106</td>
</tr>
</tbody>
</table>
3.5.5.3 Plugins 106
3.5.5.4 Prefabs 106
3.5.5.5 Scripting 106
3.5.5.6 Streaming Assets 106
3.5.5.7 Trackable Event Handler 107
3.5.5.8 Creating augmented reality 107

3.6 Add AR assets and prefabs 107
3.7 Adding Dataset load to camera 107
3.8 Android deployment process 108
3.9 iOS deployment process 108
3.10 Running in the editor 108

References 110

Chapter 4

AUGMENTED REALITY

4.1 Reported work on Augmented reality 112
 4.1.1 Types of Augmented reality. 114
 4.1.2 Augmented reality based approach. 115
 4.1.3 Extended features. 115
 4.1.4 Attributes of an Ideal image target. 115
 4.1.5 Applications. 116
 4.1.6 Advantages. 116

4.2 Methodology 117

4.3 General work flow of AR applications. 118
4.4 Augmented reality in the field of PCG signals. 118

References 120

Chapter 5

INTEGRATION AND IMPLEMENTATION OF HARDWARE AND SOFTWARE OF PCG

5.1 Hamming distance 124
5.2 Conventional approach to heart murmur signal based analysis. 125
 5.2.1 Heart murmur signal behavioural model. 125
 5.2.2 Maximal Deviation Angle of a heart murmur beam. 126
 5.2.3 Ideal case of heart murmur signal. 127
5.3 Content extraction studies.
 5.3.1 Pattern Matching
 5.3.2 Distance Measures and Alignments.
 5.3.3 Methodology.
 5.3.4 Algorithm.
 5.3.5 Decision algorithm.
5.4 Implementation of the work.
 5.4.1 Partial Digest Algorithm
 5.4.2 Median String Problem.
 5.4.3 Heart murmur Classifier algorithm.
 5.4.4 Hamming distance evaluation in Augmented reality
5.5 APP development details.
 5.5.1 Android application development
 5.5.1.1 XAMARIN
 5.5.1.2 Syntax used in development
 5.5.2 Development of android application
5.6 Generation of the image
5.7 Working on the Unity App
5.8 Creating the APP
References

Chapter 6.

PERFORMANCE STUDY OF PCG SYSTEM
6.1 Support vector machine (SVM) classifier.
 6.1.1 Performance of SVM technique
6.2 Murmur classification using Wavelet and SVM
6.3 DWT based feature extraction.
6.4 Signal quality classification using mobile phones.
6.5 Wavelet based heart murmur classification
6.6 Fast heart sound detection and murmur classification
6.7 Signal processing apparatus and method for Phonocardiogram signal
6.8 Image based PCG heart murmur classification
 6.8.1 Image based heart murmur classification using hammingdistance measure.
6.8.2 Augmented reality based heart murmur classification. 163

References. 165

Chapter 7

RESULTS AND DISCUSSIONS

7.1 Classified output for First Heart murmur signal 172

7.2 Conclusion. 179

7.3 Scope of Future scope. 179

ANNEXURE I

ANNEXURE II

PUBLICATIONS