CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>x</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xvii</td>
</tr>
</tbody>
</table>

Chapter 1 INTRODUCTION

1.1 India’s National Frequency Allocation Plan
1.2 Growth of Mobile Services and Users in India
1.3 White Spaces
1.3.1 TV White Spaces in India
1.3.2 Other White Spaces in India
1.3.3 De-licensed Bands in India
1.3.4 Un-licensed Bands in India
1.4 Cognitive Radio Technology
1.5 Cooperative Spectrum Sensing
1.6 Motivation for the Work
1.7 Objectives
1.8 Organization of the thesis

Chapter 2 REVIEW OF LITERATURE

2.1 History of Cognitive Radio
2.2 Spectrum Sensing for Cognitive Radio
2.3 Hypothesis Testing
2.4 Sensing Techniques
2.4.1 Primary Transmitter Detection
2.4.2 Energy Detection
2.4.3 Matched Filter Detection
2.4.4 Cyclostationary Feature Detection
2.4.5 Interference Based Detection
2.5 Cooperative Detection
 2.5.1 Centralized Cooperative Detection
 2.5.2 Distributed Cooperative Detection
 2.5.3 Relay-Assisted Cooperative Detection
2.6 Cooperation Overhead
2.7 Sensing Errors
2.8 Conclusions

Chapter 3 COOPERATIVE SPECTRUM SENSING OPTIMIZATION WITH ENERGY DETECTOR IN COGNITIVE RADIO NETWORKS
3.1 Introduction
3.2 Primary Signal Detection
3.3 Performance Metrics
3.4 Performance Measurement
3.5 Cooperative Spectrum Sensing
3.6 Optimization of Cooperative Spectrum Sensing
 3.6.1 Optimal Voting Rule
 3.6.2 Optimal Energy Detection Threshold
 3.6.3 Adapting Threshold using Gradient Descent Algorithm
3.7 Conclusions

Chapter 4 ENERGY EFFICIENT & THROUGHPUT ENHANCEMENT APPROACH FOR COOPERATIVE SPECTRUM SENSING
4.1 Introduction
4.2 System Model for Cooperative Spectrum Sensing
4.3 Problem Formulation
4.4 Energy Optimization Approach
4.5 Throughput Enhancement Approach
 4.5.1 AND rule
 4.5.2 OR rule
4.6 Simulation Results
4.7 Conclusions