

36. Tison H, Gauthier N, Lehardy A, Voûte P and Vale C:
Clinical-epidemiological studies in petit mal,
Neuropediatrics, 3: 29; 1972.

of three cases without mental deficit, Journal of the
American Medical Association, 175: 609; 1959.

38. Doiron J: Postsymptomatic inhibition in the central
nervous system. In: The Neuronsomes, A study program
by C.G. Cattell, T Wolfechol and P. Schles
H, New York, Hank Setler University, Boston.

39. Edens H: Postepileptic paralysis, Theoretical
Anatomical anatomy of the human brain. Little
Brown, Boston Massachusetts, (1935).

40. Edens H: Postepileptic paralysis: theoretical

41. Engel J, Binnie CD and Reithberger D:
Electrophysiological correlates of pathology and surgical results

42. Engel J, Jr. and Scudder J: Temporal lobe epilepsy:
Clinical features, pathology, diagnosis and treatment, in
current trends in psychophysiological medicine,

56. Gibbons RN: The prognosis of petit mal.
Brain, 50: 331-334; 1946.

114. Nathanam VG and Nathan A; Recent positive aspects in EEG, Electrocerebral and EEG. Neurophysiologist, 46:71; 1977.

 cines partielles de L. Comité d'évolution et facteurs de

135. Panni-LeviOnu G, Pelli : Activation effects of
 sleep deprivation and sleep in seizure patients.

137. Canada c and Rychener c : Gordon by Rensch and

138. Schuman 8 : One thousand cases of late onset epilepsy.
 Irish Journal of Medical Science, 6 : 221; 1968.

139. Shimazawa Y, Kihni R, Shima : Bioluminescence of enceph-

141. Shukla CS, Nalikar SC, Nigen P : Journal of Indian
 medical association. 79 : 120-123; 1970.

142. Shukla CS and Shukla CS : Journal of association of

 Psychiatry, 134 : 221-224; 1978.

144. Shukla CS, Subramana CS, Nalikar SC, Shukla V and
146. Silverman S and Raskin J A : Re-evaluation of sleep
146. Silverman S and Raskin J A : Clinical psychiatry,
147. Sloman R, Zonder AM and Glattke H : The schizophrenia
148. Germain DR : Epileptic systémique grave de la premiere
enfance avec points en de haut (petit mal variant) et son
149. Symonds H, Symonds HM, Williams HN and Meek RN : A
neural system in complex partial seizures.
Neurology (Minneapolis), 10 : 287; 1960.
150. Symonds H : Psychiatric implications of psychomotor
of 100 cases. Neurology (Minneapolis) 13 : 605; 1963.
152. Symonds H, Symonds HM and Sandage JW : The epilepsyse : neural
diagnosis and treatment. 2nd ed. Churchill Livingstone
Edinburgh, 1968.
dysplasia of the acoustic cortex in epilepsy. J
155. Taylor DC : Sexual behaviour and temporal lobe
183. Vright H : In Blandford V and Cottellin JAH (Eds.)
188. Walter J : Epilepsy. Brain's Diseases of the
190. Williams D : The Thalamus and epilepsy, Brain,
89 : 559; 1966.
1 : 1407; 1965.
192. Williams D : The structure of emotions reflected
193. Williams D : Her orientation in epilepsy.
194. Wendland F and Silver KH : Epilepsy after the age
of 55: A 9 years follow up study. Neurology
195. Tong MD, Kesser VS, Cohen SM and Williams DF : Computed
computed tomography and childhood autism disorders. Neurology,
196. Tong MD, Rudy D, Cernaski DF, Allen W, Central Forces
197. Zevina L and Ajovaco Nissam C : Evidence and prognostic
significance of " epileptiform" activity in the MEG
of non epileptic subjects. Brain, 11 ; 705; 1990.
APPENDIX - I

DEFINITION OF WAVES

EEG frequency bands - the rhythmicity of EEG signals gives a means of quantitatively describing EEG records, because the frequency of a rhythm can be measured. EEG frequencies are conveniently classified into the following ranges or bands:

- Delta = less than 4 Hz
- Theta = 4 to less than 8 Hz
- Alpha = 8 to 13 Hz
- Beta = more than 13 Hz

Alpha frequency and alpha rhythm - Although frequencies in the range of 8-13 Hz are referred to as alpha, the true alpha rhythm as defined by Chezria et al. (1974) has the additional properties of being most prominent in the posterior areas, present most markedly when the eyes are closed and disappears on eye opening.

REFERENCES

X. SWEEVE

A transient complex wave form consisting of slow waves sometimes associated with sharp components and often followed by a sequence of waves of about 16 Hz. The amplitude is very variable but usually about 100 µv (Roth, Shaw and Green, 1996).
Spike

A transient wave, clearly distinguished from background activity, with pointed peak at conventional paper speeds and a duration of from 20-60 milli seconds.

Sharp Wave

A transient clearly distinguished from background activity with pointed peak at conventional paper speeds and duration of 20-300 milli seconds.

Spike and Wave Rhythm

A sequence of surface negative slow waves usually with a frequency of 2.5 to 3.5 Hz having a spike associated with each wave. Sometimes there are several spikes in each complex which is then called a polyepilept and wave complex. The amplitude may attain 1000 microvolts (Chatrian, Guérin and Tessier, 1962).

Sleep spindle

An episodic rhythm at about 14 Hz maximal over the mesencephal regions occurring during certain stages of sleep. The amplitude varies up to about 30 Hz.

Vertex Waves

A sharp potential maximal at the vertex negative in relation to other areas, occurring apparently spontaneously during sleep or in response to a sensory stimulus during sleep or wakefulness. The amplitude is very variable, but may attain 300 microvolts in children during sleep (Constant, 1983).
DESCRIBING THE EEG RECORD

Before beginning to describe an EEG record it should first be looked through quickly and a mental note made of the major features. The record is then described in chronological sequence in terms of the following features:

1. The most persistent rhythmic feature - this might be the alpha rhythm.
2. Other rhythmic features, such as - delta, theta or beta rhythms.
3. Describe features of relatively long duration such as - an episode of spike and wave activity.
4. Discrete features of relatively short duration, such as isolated spikes or sharp waves.
5. The activity remaining when all the previous features have been described - sometimes called the background activity.
APPENDIX - II

 EEG ELECTRODES AND ELECTRODE PLACEMENT

ELECTRODES

Electrodes are used to make connection between the conducting fluid of the tissue in which the electrical activity is generated and the input circuit of the amplifier. Types of electrodes are scalp electrodes, sphenoidal electrodes, nasopharyngeal electrodes, electrocorticographic electrodes and intracerebral electrodes.

Scalp electrodes are of following types - the pad electrode is made of silver rod balled out at the end and padded with sponge. Metal disc or cups are commonly used. They are attached to the scalp with an adhesive. Needle electrodes of platinum alloy or stainless steel are sometimes used (but have inferior recording characteristic).

ELECTRODE PLACEMENT

The majority of laboratories use the electrode placement recommended by the International Federation of Societies for Electroencephalography and Clinical Neurophysiology known as the 10-20 system. The initial description was given by Jasper (1958). It is stated that "Anatomical studies should be carried out to determine the cortical areas most likely to be found beneath each of the standard electrode positions in the average subject. The 10-20 system is based upon measurements from and standard points on the head, the nasion, the inion and the left and
right pre-auricular points. Two other points are also present P_{ps} and O_{y}. The position of all the electrodes are marked by a skin marking pencil prior to their application. The measurements are made with a tape measure or pliable rule as follows:

1. Measure the distance from nasion to inion along the midline through the vertex and make a preliminary mark at the mid point C_{n}.

2. This is also the midpoint between the line drawn between the preauricular points (i.e., just anterior to the tragus).

3. Reapply the tape along the midline through C_{n} and mark points at 10, 20, 30, 40 and 50% of the total nasion—inion distance. These are positions of P_{ps}, P_{s}, C_{n} P_{u} and C_{u}.

4. Reapply the tape transversely through C_{n} and mark points at 10, 20, 30, 40, 50 and 60% of the total distance between the pre-auricular points. These are the positions of T_{3}, C_{3}, C_{2}, C_{1} and T_{4}. Note that the odd numbered positions are always on the left.

5. Measure the distance between P_{ps} and C_{n} by applying the tape along the great circle passing through T_{3} and mark points at 10, 20, 30, 40, 50 and 60% of this length. These are the positions of P_{pl}, P_{7}, T_{5}, T_{6} and C_{1}.
6. Repeat this procedure on the right side and mark the positions of P4, P3, P2, P1 and C2.

7. Measure the distance between P1 and C1 by applying the tape along the great circle passing through C3 and marks points at 25% intervals. These give the positions of P3, C3 and P2.

8. Repeat this procedure on the right side and mark the positions of P4, C4 and P4.

9. Check that P7, P3, P2, P4 and P6 are equidistant by applying the tape transversely along the great circle passing through P7, P3 and P6.

10. Check that P3, P6, P5, P4 and P6 are equidistant in a similar manner.
WORKING FORMULA

CLINICAL AND ELECTROENCEPHALOGRAPHIC STUDY OF EPILEPSY
IN BUNDALKHAND

Case No.

OPD/NRD No. EEC No.

1. Name :
2. Age/Sex :
3. Occupation :
4. Marital Status:
5. Address :
6. Date of contact:

7. Age when seizure started (in years):
 0 - 5
 6 - 10
 11 - 20
 21 - 30
 31 - 40
 41 - 50
 50+

8. Frequency of seizures:
 Yearly:
 Monthly:
 Weekly:
 Daily:
 More than once a day:

9. Predisposing and etiological factors:
 Not known
 Febrile convulsions
 Birth injury with anoxia
 Inflammatory brain disease
 Vascular lesions
 Head injury
 Intracranial space occupying lesions

10. Family history of epilepsy:
 Negative:
 Positive (Specify):

11. Precipitating factors:
 Sleep
 Sleep Deprivation
 Fatigue
 Light
 Menstruation/pregnancy
 Exposure to heat &/or cold
 Alcohol
 Emotional upset
 Any other
13. **Clinical Features**

I. **Type of Seizure**

A. **Generalized**
 - Tonic–clonic
 - Tonic
 - Atonic
 - Absence (Petit mal)
 - Myoclonic Absence
 - Myoclonic

B. **Partial (Focal)**
 a. Simple partial — (without impairment of consciousness)
 b. Complex partial — (with impairment of consciousness)

C. **Partial Seizure Secundarily generalized**

D. **Unclassifiable**

II. **Tonic–clonic Seizures** (Details of events)

a. **Preconvulsive symptoms**
 - Irritability/drowsiness/Abnormal feeling
 - Related to head/giddiness/sudden myoclonic
 - Triches/others

b. **The Auras — Sensory**
 - Psycho-sensory
 - Emotional
 - Asthenic

c. **The convulsions**
 - Epileptic Cry
 - Consciousness
 - Tonic stage
 - Clonic phase

d. **Post convulsive phase**
 - Consciousness
 - Headache
 - Mental symptoms
 - Neurological deficit
III. Detailed Description of Seizures other than tonic-clonic Seizures.

Drug History:

14. **Physical Examination**
 A. Neurological Examination
 a. Higher Psychological Functions.
 b. Cranial Nerves:
 c. Motor System:
 d. Sensory System:

15. **Investigations**
 Blood - VITAL (Reactive/Nonreactive)
 - Blood sugar:
 - Serum Calcium:
 X-ray - Skull
 X-ray - Chest PA View
 Fundus Examination:
 C.S.F. Examination: Normal/Abnormal
 E.E.G.: Normal/Abnormal
 Abnormal - Spikes
 - Sharpwaves
 - Slow waves
 - Spikes and waves
 - Polysharp waves
 - Polyspike
 - Phase reversals
 - Constant/paroxysmal

CAT Scan:

Drug Treatment: