LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Classification of plasmas (electrons temperature versus electrons density)</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>Evolution of the plasma temperature (electrons and heavy particles) with the pressure in a mercury plasma arc.</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Schematic elastic collision of a moving j-particle in the frame of reference of another i-particle.</td>
<td>9</td>
</tr>
<tr>
<td>2.1(a)</td>
<td>Concentration X_i of different species of ground state hydrogen thermal plasma vs. electron temperature at $p = 1$ atm. The numerals on the curves present the value of non-equilibrium parameter θ.</td>
<td>37</td>
</tr>
<tr>
<td>2.1(b)</td>
<td>Concentration X_i of different species of excited state hydrogen thermal plasma vs. electron temperature at $p = 1$ atm. The numerals on the curves present the value of non-equilibrium parameter θ.</td>
<td>37</td>
</tr>
<tr>
<td>2.1(c)</td>
<td>Variation of excited state concentration $X_{H(n)}$ with electron temperature for the hydrogen thermal plasma at $p = 1$ atm.</td>
<td>38</td>
</tr>
<tr>
<td>2.2(a)</td>
<td>Concentration X_i of different species of ground state (GS) hydrogen thermal plasma vs. electron temperature at $p = 100$ atm. The numerals on the curves present the value of non-equilibrium parameter θ.</td>
<td>38</td>
</tr>
<tr>
<td>2.2(b)</td>
<td>Concentration X_i of different species of excited state (ES) hydrogen thermal plasma vs. electron temperature at $p = 100$ atm. The numerals on the curves present the value of non-equilibrium parameter θ.</td>
<td>39</td>
</tr>
<tr>
<td>2.2(c)</td>
<td>Variation of excited state concentration $X_{H(n)}$ with electron temperature for hydrogen thermal plasma at $p = 100$ atm.</td>
<td>39</td>
</tr>
<tr>
<td>2.3</td>
<td>Electron number density n_e of ground state (GS) and excited state (ES) hydrogen thermal plasma vs. electron temperature at $p = 100$ atm. The numerals on the curves denote the value of non-equilibrium parameter θ.</td>
<td>40</td>
</tr>
<tr>
<td>2.4(a)</td>
<td>Electrical conductivity $\sigma_{e}^{(3)}$ vs. electron temperature for ground state (GS) and excited state (ES) hydrogen thermal plasmas at $p = 1$ atm. The numerals on curves present the value of non-equilibrium parameter θ.</td>
<td>43</td>
</tr>
<tr>
<td>2.4(b)</td>
<td>Electrical conductivity $\sigma_{e}^{(3)}$ vs. electron temperature for ground state (GS) and excited state (ES) hydrogen thermal plasmas at $p = 1$ atm up to $T_e = 13000K$. The numerals on curves present the value of non-equilibrium parameter θ.</td>
<td>43</td>
</tr>
</tbody>
</table>
2.4 (c) Variation of third-order contribution to electrical conductivity \(f_{\sigma_{e}}^{(3)} \) with electron temperature for ground state (GS) and excited state (ES) hydrogen thermal plasmas at \(p=1 \) atm.

2.5 (a) Electrical conductivity \(\sigma_{e}^{(3)} \) vs. electron temperature for ground state (GS) and excited state (ES) hydrogen thermal plasmas at \(p=100 \) atm. The numerals on curves present the value of non-equilibrium parameter \(\theta \).

2.5 (b) Variation of third-order contribution to electrical conductivity \(f_{\sigma_{e}}^{(3)} \) with electron temperature for the ground state (GS) hydrogen thermal plasma at \(p=100 \) atm.

2.5 (c) Variation of third-order contribution to electrical conductivity \(f_{\sigma_{e}}^{(3)} \) with electron temperature for the excited state (ES) hydrogen thermal plasma at \(p=100 \) atm.

2.6 (a) Thermal conductivity \(\lambda_{e}^{(3)} \) vs. electron temperature for ground state (GS) and excited state (ES) hydrogen thermal plasmas at \(p=1 \) atm. The numerals on curves present the value of non-equilibrium parameter \(\theta \).

2.6 (b) Thermal conductivity \(\lambda_{e}^{(3)} \) vs. electron temperature for ground state (GS) and excited state (ES) hydrogen thermal plasmas at \(p=1 \) atm for different values of non-equilibrium parameter \(\theta \) upto \(T_e=13000K \).

2.6 (c) Variation of third-order contribution to thermal conductivity \(f_{\lambda_{e}}^{(3)} \) with electron temperature for the ground state (GS) and excited state (ES) hydrogen thermal plasma at \(p=1 \) atm.

2.7 (a) Thermal conductivity \(\lambda_{e}^{(3)} \) vs. electron temperature for ground state (GS) and excited state (ES) hydrogen thermal plasmas at \(p=100 \) atm. The numerals on curves present the value of non-equilibrium parameter \(\theta \).

2.7 (b) Variation of third-order contribution to thermal conductivity \(f_{\lambda_{e}}^{(3)} \) with electron temperature for the ground state (GS) hydrogen thermal plasma at \(p=100 \) atm.

2.7 (c) Variation of third-order contribution to thermal conductivity \(f_{\lambda_{e}}^{(3)} \) with electron temperature for the excited state (ES) hydrogen thermal plasma at \(p=100 \) atm.

2.8 Variation of \(\frac{n_{e}(ES)}{n_{e}(GS)} \) with electron temperature for the different number of excited states \((n) \) for hydrogen thermal plasma at \(p=100 \) atm.
2.9 (a) Variation of third-order contribution to thermal conductivity \(f_{\lambda_3}^{(3)} \) with electron temperature for the different number of excited states \((n)\) for hydrogen thermal plasma at \(p = 100 \text{ atm} \).

2.9 (b) Effect of electronically excited states (EES) in hydrogen thermal plasma on the third-order thermal conductivity \(f_{\lambda_3}^{(3)} \) with ground state cross-section for all e-H\((n)\) interactions at \(p = 100 \text{ atm} \).

2.10 Variation of third-order electrical conductivity \(\sigma_{e}^{(3)} \) vs. electron temperature for hydrogen thermal plasma using different Saha equation for GS and ES cases at \(p = 1 \text{ atm} \) (a) S1 (b) S2 (c) S3 (d) S4

2.11 Variation of third-order contribution to electrical conductivity \(f_{\sigma_e}^{(3)} \) for hydrogen thermal plasma with electron temperature using different Saha equations for GS and ES cases at \(p = 1 \text{ atm} \) (a) \(\theta = 1.5 \) (b) \(\theta = 3 \)

3.1 (a) Electron diffusion \(D_{ee}^{(3)} \) vs. electron temperature for ground state (GS) and excited state (ES) hydrogen thermal plasmas at \(p = 1 \text{ atm} \) for the different values of non-equilibrium parameter \(\theta \).

3.1 (b) Electron diffusion \(D_{ee}^{(3)} \) vs. electron temperature for ground state (GS) and excited state (ES) hydrogen thermal plasmas at \(p = 1 \text{ atm} \) for the different values of non-equilibrium parameter \(\theta \).

3.2 (a) Thermal diffusion \(D_{T_e}^{(3)} \) vs. electron temperature for ground state (GS) and excited state (ES) hydrogen thermal plasmas at \(p = 1 \text{ atm} \). The numerals on curves present the value of non-equilibrium parameter \(\theta \).

3.2 (b) Variation of third-order contribution to thermal diffusion \(f_{D_{T_e}}^{(3)} \) with electron temperature for the ground state (GS) hydrogen thermal plasma at \(p = 1 \text{ atm} \).

3.2 (c) Variation of third-order contribution to thermal diffusion \(f_{D_{T_e}}^{(3)} \) with electron temperature for the excited state (ES) hydrogen thermal plasma at \(p = 1 \text{ atm} \)

3.3 (a) Thermal diffusion vs. electron temperature for both ground state (GS) and excited state (ES) hydrogen thermal plasmas at \(p = 100 \text{ atm} \). The numerals on curves present the value of non-equilibrium parameter \(\theta \).
3.3 (b) Variation of third-order contribution to thermal diffusion $f^{(3)}_{D_e}$ with electron temperature for ground state (GS) and excited state (ES) hydrogen thermal plasma at p = 100 atm. The numerals on curves present the value of non-equilibrium parameter θ.

3.4 (a) Thermal diffusion ratio $k_e^{(3)}$ vs. electron temperature for ground state (GS) and excited state (ES) hydrogen thermal plasmas at p = 1 atm. The numerals on curves present the value of non-equilibrium parameter θ.

3.4 (b) Variation of third-order contribution to thermal diffusion ratio $f^{(3)}_{k_e}$ with electron temperature for the ground state (GS) hydrogen thermal plasma at p = 1 atm.

3.4 (c) Variation of third-order contribution to thermal diffusion ratio $f^{(3)}_{k_e}$ with electron temperature for the excited state (ES) hydrogen thermal plasma at p = 1 atm.

3.5 (a) Thermal diffusion ratio $k_e^{(3)}$ vs. electron temperature for ground state (GS) and excited state (ES) hydrogen thermal plasmas at p=100 atm. The numerals on the curve present the value of non-equilibrium parameter θ.

3.5 (b) Variation of third-order contribution to thermal diffusion ratio $f^{(3)}_{k_e}$ with electron temperature for ground state (GS) and excited state (ES) hydrogen thermal plasmas at p=100 atm. The numerals on the curve present the value of non-equilibrium parameter θ.

3.6 (a) Variation of third-order contribution to thermal diffusion $f^{(3)}_{D_e}$ with electron temperature for the different number of excited states (n) for hydrogen thermal plasma at p=100 atm.

3.6 (b) Variation of third-order contribution to thermal diffusion ratio $f^{(3)}_{k_e}$ with electron temperature for the different number of excited states (n) for hydrogen thermal plasma at p=100 atm.

3.7 Effect of definitions D1 and D2 of Debye length on third-order thermal diffusion ratio $k_e^{(3)}$ for ground state (GS) and excited state (ES) hydrogen thermal plasma at p=1 atm for different values of non-equilibrium parameter (a) $\theta=1$ (b) $\theta=1.5$ (c) $\theta=2.5$
3.8 Higher-order Convergence for electron diffusion vs. electron temperature for definitions D1 and D2 of Debye length in ground state (GS) and excited state (ES) hydrogen thermal plasma at p=1 atm for different values of non-equilibrium parameter (a) $\theta = 1$ (b) $\theta = 1.5$ (c) $\theta = 2.5$

3.9 Effect of definitions D1 and D2 of Debye length on third-order thermal diffusion $D^{(3)}_e$ for ground state (GS) and excited state (ES) hydrogen thermal plasma at p=1 atm for different values of non-equilibrium parameter (a) $\theta = 1$ (b) $\theta = 1.5$ (c) $\theta = 2.5$

3.10 Higher-order convergence for electron thermal diffusion vs. electron temperature for definitions D1 and D2 of Debye length in ground state (GS) and excited state (ES) hydrogen thermal plasma at p=1 atm for different values of non-equilibrium parameter (a) $\theta = 1$ (b) $\theta = 1.5$ (c) $\theta = 2.5$

3.11 Effect of definitions D1 and D2 of Debye length on third-order thermal diffusion ratio $k^{(3)}_e$ for ground state (GS) and excited state (ES) hydrogen thermal plasma at p=1 atm for different values of non-equilibrium parameter (a) $\theta = 1$ (b) $\theta = 1.5$ (c) $\theta = 2.5$

3.12 Higher-order Convergence for electron thermal diffusion ratio vs. electron temperature for definitions D1 and D2 of Debye length in ground state (GS) and excited state (ES) hydrogen thermal plasma at p=1 atm for different values of non-equilibrium parameter (a) $\theta = 1$ (b) $\theta = 1.5$ (c) $\theta = 2.5$

4.1 Concentration X_i of different species of argon-helium (25-75 mol %) plasma mixture vs. electron temperature at p=1 atm for different values of the non-equilibrium parameter θ (a) GS case (b) ES case

4.2 Electron number density n_e of ground state (GS) and excited state (ES) argon-helium (25-75 mol %) plasma mixture vs. electron temperature at p=1 atm for different value of the non-equilibrium parameter θ.

4.3 Degree of ionization α of ground state (GS) and excited state (ES) argon-helium (25-75 mol %) plasma mixture vs. electron temperature at p = 1 atm for the non-equilibrium parameter $\theta = 1 & 3$.

4.4 (a) Third-order electrical conductivity $\sigma^{(3)}_e$ vs. electron temperature in ground state (GS) and excited state (ES) argon-helium (25-75 mol%) plasma mixture p=1 atm for different values of the non-equilibrium parameter θ.

80

82

83

85

86

92

92

93

96
4.4 (b) Third-order electrical conductivity $\sigma_e^{(3)}$ vs. electron temperature in ground state (GS) and excited state (ES) argon-helium (25-75 mol%) plasma mixture at $p=1$ atm for different values of the non-equilibrium parameter θ up to $T_e=15000$K.

4.5 Relative error (RE) vs. electron temperature for third-order electrical conductivity $\sigma_e^{(3)}$ in ground state (GS) and excited state (ES) argon-helium (25-75 mol%) plasma mixture at $p=1$ atm for different values of the non-equilibrium parameter θ.

4.6 Higher-order convergence for electrical conductivity vs. electron temperature in ground state (GS) and excited state (ES) argon-helium (25-75 mol%) plasma mixture at $p=1$ atm for different values of the non-equilibrium parameter θ.

4.7 (a) Third order electron thermal conductivity $\lambda_e^{(3)}$ vs. electron temperature in ground state (GS) and excited state (ES) argon-helium (25-75 mol%) plasma mixture at $p=1$ atm for different values of non-equilibrium parameter θ.

4.7 (b) Third-order electron thermal conductivity $\lambda_e^{(3)}$ vs. electron temperature in ground state (GS) and excited state (ES) argon-helium (25-75 mol%) plasma mixture at $p=1$ atm for different values of the non-equilibrium parameter θ up to $T_e=15000$K.

4.8 Relative error (RE) vs. electron temperature for third-order electron thermal conductivity $\lambda_e^{(3)}$ in ground state (GS) and excited state (ES) argon-helium (25-75 mol%) mixture at $p=1$ atm for the different values of the non-equilibrium parameter θ.

4.9 Higher-order convergence for electron thermal conductivity vs. electron temperature in ground state (GS) and excited state (ES) argon-helium (25-75 mol%) plasma mixture at $p=1$ atm for different values of the non-equilibrium parameter θ.

4.10 Debye length λ_D vs. electron temperature for definitions D1 and D2 in argon-helium (25-75 mol%) plasma mixture at $p=1$ atm (a) GS case (b) ES case

4.11 Effect of definition of Debye length on third electrical conductivity $\sigma_e^{(3)}$ in ground state (GS) and excited state (ES) argon-helium (50-50 mol%) plasma mixture at $p=1$ atm (a) $\theta = 1$ (b) $\theta = 3$.

4.12 Relative error vs. electron temperature with definitions D1 and D2 of Debye length on electron number density n_e in argon-helium (25-75 mol %) mixture at $p=1$ atm (a) GS case (b) ES case. Numerals on curves represent different values of the non-equilibrium θ.

4.13 Effect of lowering of ionization energy with definition D2 of Debye length for third-order electrical conductivity vs. electron temperature argon-helium (25-75 mol%) plasma mixture at $p=1$ atm for different values of non-equilibrium parameter θ (a) GS case (b) ES case.

4.14 Variation of third-order contribution to electrical conductivity $\sigma_{\epsilon}^{(3)}$ with electron temperature in excited state Ar-He (25-75 mol %) plasma mixture at $p=1$ atm for different values of the non-equilibrium parameter θ. (a) D1 (b) D2.

4.15 Concentration X_i of different species of Ar-He-H$_2$ (50-40-10 mol%) plasma mixture vs. electron temperature at $p = 1$ atm for different values of the non-equilibrium parameter θ. (a) GS case (b) ES case.

4.16 Electron number density n_e of ground state (GS) and excited state (ES) Ar-He-H$_2$ (50-40-10 mol %) plasma mixture vs. electron temperature at $p=1$ atm for different value of the non-equilibrium parameter θ.

4.17 Degree of ionization α of ground state (GS) and excited state (ES) Ar-He-H$_2$ (50-40-10 mol%) plasma mixture vs. electron temperature at $p=1$ atm for different values of non-equilibrium parameter $\theta = 1$ and 3.

4.18 Third-order electrical conductivity $\sigma_{\epsilon}^{(3)}$ vs. electron temperature in ground state (GS) and excited state (ES) Ar-He-H$_2$ (50-40-10 mol%) plasma mixture $p=1$ atm for different values of the non-equilibrium parameter θ.

4.19 Higher-order convergence for electrical conductivity vs. electron temperature in ground state (GS) and excited state (ES) Ar-He-H$_2$ (50-40-10 mol %) plasma mixture at $p=1$ atm for different values of the non-equilibrium parameter θ.

4.20 Relative error (RE) vs. electron temperature for third-order electrical conductivity $\sigma_{\epsilon}^{(3)}$ in ground state (GS) and excited state (ES) Ar-He-H$_2$ (50-40-10 mol %) mixture at $p=1$ atm for the different values of the non-equilibrium parameter θ.

4.21 Third-order electron thermal conductivity $\lambda_{\epsilon}^{(3)}$ vs. electron temperature in ground state (GS) and excited state(ES) Ar-He-H$_2$ (50-40-10 mol%) plasma mixture at $p=1$ atm for different values of non-equilibrium parameter θ.
4.22 Higher-order convergence for electron thermal conductivity vs. electron temperature in ground state (GS) and excited state (ES) Ar-He-H₂ (50-40-10 mol%) plasma mixture at p=1 atm for different values of the non-equilibrium parameter θ.

4.23 Relative error (RE) vs. electron temperature for third-order electron thermal conductivity $\lambda^{(3)}_e$ in ground state (GS) and excited state (ES) Ar-He-H₂ (50-40-10 mol %) mixture at p=1 atm for the different values of the non-equilibrium parameter θ.

4.24 Effect of molar composition on higher-order convergence for electrical conductivity in excited state argon-helium thermal plasma mixtures at p=1 atm (a) $\theta = 1$ (b) $\theta = 3$

4.25 Effect of molar composition on higher-order convergence for electrical conductivity in excited state Ar-He-H₂ thermal plasma mixtures at p=1 atm (a) $\theta = 1$ (b) $\theta = 3$
<table>
<thead>
<tr>
<th>Table No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Collision cross-sections required for third-order electron transport properties</td>
<td>41</td>
</tr>
<tr>
<td>2.2</td>
<td>Data source for cross-sections.</td>
<td>41</td>
</tr>
<tr>
<td>2.3</td>
<td>Higher-order contribution $f^{(n)}_{\sigma_e}(n=2,3)$ to the electrical conductivity σ_e for ground state (GS) and excited state (ES) hydrogen thermal plasmas as a function of electron temperature T_e and non-equilibrium parameter $\theta(=T_e/T_b)$ at $p=1$ atm.</td>
<td>46</td>
</tr>
<tr>
<td>2.4</td>
<td>Higher-order contribution $f^{(n)}_{\sigma_e}(n=2,3)$ to the electrical conductivity σ_e for ground state (GS) and excited state (ES) hydrogen thermal plasmas as a function of electron temperature T_e and non-equilibrium parameter $\theta(=T_e/T_b)$ at $p=100$ atm.</td>
<td>46</td>
</tr>
<tr>
<td>2.5</td>
<td>Higher-order contribution $f^{(n)}_{\lambda_e}(n=2,3)$ to the thermal conductivity λ_e for ground state (GS) and excited state (ES) hydrogen thermal plasmas as a function of electron temperature T_e and non-equilibrium parameter $\theta(=T_e/T_b)$ at $p=1$ atm.</td>
<td>52</td>
</tr>
<tr>
<td>2.6</td>
<td>Higher-order contribution $f^{(n)}_{\lambda_e}(n=2,3)$ to the thermal conductivity λ_e for ground state (GS) and excited state (ES) hydrogen thermal plasmas as a function of electron temperature T_e and non-equilibrium parameter $\theta(=T_e/T_b)$ at $p=100$ atm.</td>
<td>52</td>
</tr>
<tr>
<td>3.1</td>
<td>Higher-order contribution $f^{(n)}_{D_e}(n=2,3)$ to the thermal diffusion D_e for ground state (GS) and excited state (ES) hydrogen thermal plasmas as a function of electron temperature T_e and non-equilibrium parameter $\theta(=T_e/T_b)$ at $p=1$ atm.</td>
<td>69</td>
</tr>
<tr>
<td>3.2</td>
<td>Higher-order contribution $f^{(n)}_{D_e}(n=2,3)$ to the thermal diffusion D_e for ground state (GS) and excited state (ES) hydrogen thermal plasmas as a function of electron temperature T_e and non-equilibrium parameter $\theta(=T_e/T_b)$ at $p=100$ atm.</td>
<td>69</td>
</tr>
</tbody>
</table>
3.3 Higher-order contribution $f_{k^3_e}(n=2,3)$ to the thermal diffusion ratio k_e^T for ground state (GS) and excited state (ES) hydrogen thermal plasmas as a function of electron temperature T_e and non-equilibrium parameter $\theta(=T_e/T_n)$ at $p = 1$ atm.

3.4 Higher-order contribution $f_{k^3_e}(n=2,3)$ to the thermal diffusion ratio k_e^T for ground state (GS) and excited state (ES) hydrogen thermal plasmas as a function of electron temperature T_e and non-equilibrium parameter $\theta(=T_e/T_n)$ at $p = 100$ atm.

4.1 Ionization energy of species.

4.2 Collision cross-sections required for third-order transport properties

4.3 Data source for cross-sections.