CONTENTS

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i-iv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>v-viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>x-xi</td>
</tr>
<tr>
<td>1. Solar Power in India Opportunities and Challenges</td>
<td>1-15</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Installed Capacity and Capacity Utilization</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Renewable Energy Scenario in India</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Consumption of Electricity</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Solar Energy a viable alternative to meet our growing energy demands</td>
<td>7</td>
</tr>
<tr>
<td>1.6 Solar PV Modules</td>
<td>8</td>
</tr>
<tr>
<td>1.6.1 Single-crystal silicon</td>
<td>12</td>
</tr>
<tr>
<td>1.6.2 Polycrystalline silicon</td>
<td>12</td>
</tr>
<tr>
<td>1.6.3 Gallium Arsenide (GaAs)</td>
<td>12</td>
</tr>
<tr>
<td>1.6.4 Cadmium Telluride (CdTe)</td>
<td>12</td>
</tr>
<tr>
<td>1.6.5 Copper Indium Diselenide (CuInSe2)</td>
<td>13</td>
</tr>
<tr>
<td>1.7 Status of PV industry in India</td>
<td>13</td>
</tr>
<tr>
<td>1.8 Thesis Organization</td>
<td>14</td>
</tr>
<tr>
<td>1.9 Summary</td>
<td>15</td>
</tr>
<tr>
<td>2. Photovoltaic Systems</td>
<td>16-40</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>16</td>
</tr>
<tr>
<td>2.2 Equivalent circuit of Photovoltaic cell</td>
<td>16</td>
</tr>
<tr>
<td>2.2.1 Characteristic of the PV Cells</td>
<td>19</td>
</tr>
<tr>
<td>2.3 Open circuit voltage, short circuit current and maximum power point</td>
<td>20</td>
</tr>
<tr>
<td>2.4 Temperature and irradiance effects</td>
<td>21</td>
</tr>
<tr>
<td>2.5 Photovoltaic System Configuration</td>
<td>23</td>
</tr>
<tr>
<td>2.5.1 Central inverter</td>
<td>24</td>
</tr>
<tr>
<td>2.5.2 String inverter</td>
<td>24</td>
</tr>
<tr>
<td>2.5.3 Multi-string inverter</td>
<td>25</td>
</tr>
<tr>
<td>2.5.4 Module integrated inverter</td>
<td>26</td>
</tr>
<tr>
<td>2.6 Importance of MPPT</td>
<td>26</td>
</tr>
</tbody>
</table>
2.7 Literature review
2.8 Research Objectives
2.9 Problem Statement
2.10 Summary

3. Modeling Strategies of Photovoltaic Cells

3.1 Introduction of Single Diode model
 3.1.1 Photovoltaic cell model in reverse bias
 3.1.2 Simulink based model of PV cell using single diode
 3.1.3 Results & Discussions

3.2 Modelling of Photovoltaic Cell Using Two Diodes
 3.2.1 Review of the two-diode model
 3.2.2 Simulink based model of PV cell using two diodes
 3.2.3 Results & Discussions

3.3 Simscape Model of Photovoltaic Cell
 3.3.1 Sim Electronics
 3.3.2 Solar cell model
 3.3.3 Simscape model of shell sq 175 solar cell module
 Having 72 individual Cells
 3.3.4 Simscape model of shell sq 175 solar cell module
 Having 72 individual Cells- Representation of individual blocks
 3.3.5 Results & Discussions
 3.3.6 Summary

4. Extraction of PV Cell Parameters Using Evolutionary Approaches

4.1 Introduction
4.2 Fitness Function/Objective Function Formulation
 For Parameter Extraction
4.3 Objective Function
4.4 Genetic Algorithm
 4.4.1 GA implementation for solar cell parameter extraction
 4.4.2 Genetic Algorithm execution plots
4.5 Differential Evolution
 4.5.1 Initialization
 4.5.2 Mutation
4.5.3 Crossover 78
4.5.4 Evaluation and Selection 78
4.6 DE Based Parameter Extraction 79
4.7 Implementation of Differential Evolution 79
 4.7.1 Output Arguments 80
 4.7.2 Input Arguments 80
4.8 Differential Algorithm execution plots 82
4.9 Results & Discussions 83
4.10 Summary 85

5. ANN Based Maximum Power Point Tracking Of PV Cells 86-122
 5.1 Introduction 86
 5.2 Types of MPPT techniques 86
 5.2.1 Hill-climbing techniques 86
 5.2.2 Fractional open circuit voltage 87
 5.2.3 Fractional short circuit current 88
 5.2.4 Current sweep 88
 5.2.5 Perturb and observe 89
 5.2.6 Incremental conductance 90
 5.3 Partial shading on PV arrays 92
 5.3.1 The Effect of Shade on Solar Panels 93
 5.4 Artificial Neural Networks 94
 5.4.1 Humans and Computers 95
 5.4.2 Characteristics of ANN 95
 5.4.3 Applications 96
 5.4.4 Back propagation Algorithm 96
 5.5 Different Schemes of Implementation of MPPT in the proposed work 97
 5.6 Simulation of Short-Circuit Current and Incremental-Conductance with Direct control Method of MPPT 97
 5.6.1 PV Module and MPPT 97
 5.6.2 Current Based Peak Power Tracker S-C Current Method 101
 5.6.3 Flowchart Of Short-Circuit Current Method 101
 5.6.4 Incremental conductance method with direct control 102
 5.6.5 Selection of Proper Converter for MPPT 103
 5.6.6 Simulation of Short circuit current method 105
5.6.7 Simulink Diagram of the Incremental-Conductance with Direct control MPPT Technique 107

5.7 GA Trained Artificial Neuron Network Maximum Power Point Tracker 110
5.7.1 Maximum Power GA Function 110
5.7.2 ANN PV GA Function with Its Regression Function 112
5.7.3 Training error courses 113
5.7.4 Results & Discussion 115

5.8 Summary 121

6. Fuzzy Based Maximum Power Point Tracking Of PV Cells 123-156

6.1 Introduction 123
6.1.1 Review of Fuzzy Logic Concepts 124
6.2 Different Schemes for Implementing MPPT 128
6.3 Fuzzy logic based MPPT with PWM technique 126
6.3.1 Proposed Method 126
6.3.2 Membership Functions of Proposed Fuzzy Logic Controller 126
6.3.3 Simulink Diagram of Proposed method 130
6.4 Fuzzy Logic Based Controller of MPPT for Partial Shadow condition 132
6.4.1 Proposed Photovoltaic Array 132
6.4.2 PV modules output power characteristics under the five cases 133
6.4.3 Flowchart of Proposed Method 135
6.4.4 Fuzzy Logic Controller Design 136
6.4.5 Simulink Diagrams of MPPT with and without Fuzzy Logic Controller 139
6.5 GA Enhanced Fuzzy Logic Based Controller of MPPT under Partially Shaded Condition 141
6.5.1 Proposed fuzzy based system 142
6.5.2 GA Trained Fuzzy MPPT Simulation Diagram 143
6.5.3 Rule base view diagrams under different insolation 145
6.5.4 Results & Discussions 146

6.6 Summary 156

7. Conclusions & Future Scope 157-161

Bibliography 162-178
Appendix-I
Appendix-II
Appendix-III
Publication Papers