CONTENTS

Preface i
List of publications iv

CHAPTER 1

GENERAL INTRODUCTION 01

1. **INTRODUCTION** 02
2. **PHOSPHOR CONVERTED WHITE LIGHT EMITTING DIODES** 03
3. **LUMINESCENCE** 08
 1. 3. **Luminescence mechanism** 08
 2. 3. **Classific of luminescence based on the lifetime of emission** 10
 3. 3.1. **Fluorescence** 10
 4. 3.2. **Phosphorescence** 11
 5. 3.2.3. **Jablonski diagram** 11
 6. 3.3. **Classification of luminescence based on the excitation sources** 16
 7. 3.3.1. **Photoluminescence** 17
4. **TRAPS AND PHOSPHORESCENCE** 19
5. **APPLICATIONS OF LUMINESCENT MATERIALS** 19
6. **EFFECT OF HOST LATTICE ON THE EFFICIENCY OF A LUMINESCENT MATERIAL** 19
 1. 6.1. **Covalency** 20
 2. 6.2. **Crystal field** 20
7. **RARE EARTH IONS IN SOLIDS** 21
8. **ENERGY LEVELS OF RARE EARTH IONS AND THE DIEKE DIAGRAM** 24
9. **RARE EARTH IONS EXCITATION PROCESSES** 27
 1. 9.1. **4f-4f transitions** 27
 2. 9.2. **4f-5d transitions** 27
 3. **Charge transfer state (CTS) transitions** 28
1.10. RARE EARTH IONS DE-EXCITATION PROCESSES 28

1.10.1. Induced electric-dipole transitions 28
1.10.2. Magnetic-dipole transitions 29
1.10.3. Electric-quadrupole transitions 29
1.10.4. Hypersensitive transitions 29

1.11. NON-RADIATIVE DE-EXCITATIONS 30

1.11.1. Multiphonon relaxation 31
1.11.2. Concentration quenching 32

1.12. OPTICAL PROPERTIES OF RARE EARTH IONS 32

1.13. HOST MATERIAL FOR RARE EARTHS 32

1.14. NANOPHOSPHORS 33

1.14.1. Synthesis of nanophosphors 34

1.15. COLORIMETRY AND COLOR ANALYSIS 35

1.15.1. Correlated color temperature (T_{\text{cct}}) 37

REFERENCES 38

CHAPTER 2

EXPERIMENTAL DETAILS 43

2.1. INTRODUCTION 44

2.2. MATERIAL SYNTHESIS METHODS 44

2.2.1. Solid state reaction 45
2.2.2. Modified sol-gel combustion synthesis 46

2.3. NUCLEATION AND GROWTH FROM SOLUTIONS 46

2.4. STABILIZATION OF FINE PARTICLES AGAINST AGGLOMERATION 47

2.5. MODIFIED SOL-GOL COMBUSTION SYNTHESIS 48

2.6. SOLID STATE REACTION METHOD 50

2.7. INSTRUMENTS AND CHARACTERIZATION TECHNIQUES 51

2.7.1. X-ray diffraction 51
2.7.2. Scanning electron microscopy 54
2.7.3. Fourier transform infrared spectroscopy 55
2.7.4. Raman spectroscopy 57
CHAPTER 3

LUMINESCENCE PROPERTIES OF Eu$^{3+}$-DOPED Na$_3$Gd(PO$_4$)$_2$ RED-EMITTING NANOPHOSPHORS FOR LEDS

3.1. INTRODUCTION

3.2. EXPERIMENTAL DETAILS

3.3. RESULTS AND DISCUSSION

3.3.1. Compositional analysis

3.3.2. Excitation spectra

3.3.3. Emission spectra

3.3.6. Luminescence decay analysis

3.4. CONCLUSIONS

REFERENCES

CHAPTER 4

SYNTHESIS AND CHARACTERIZATION OF Eu$^{3+}$/Ce$^{3+}$ CO-DOPED Na$_3$Gd(PO$_4$)$_2$ PHOSPHORS

4.1. INTRODUCTION

4.2. EXPERIMENTAL DETAILS

4.3. RESULTS AND DISCUSSION

4.3.2. Photoluminescence studies

4.3.3. Color Coordinates

4.4. CONCLUSIONS

REFERENCES

CHAPTER 5

STRUCTURAL AND LUMINESCENCE PROPERTIES OF Dy$^{3+}$-DOPED Na$_3$Gd(PO$_4$)$_2$ NANOPHOSPHORS FOR SOLID STATE WHITE LEDS
5.3.1. Compositional analysis 84
5.3.2. Excitation spectrum 85
5.3.3. Emission Spectra 85
5.3.4. CIE chromaticity coordinates and color purity 88
5.3.5. Lifetime measurements 90

5.4. CONCLUSIONS 90

REFERENCES 91

CHAPTER 6

Dy$^{3+}$/Eu$^{3+}$ CO-DOPED Na$_3$Gd(PO$_4$)$_2$ PHOSPHORS FOR WHITE LIGHT LUMINESCENCE 92

6.1. INTRODUCTION 93
6.2. EXPERIMENTAL 93
6.3. RESULTS AND DISCUSSION 94
 6.3.1. Structural analysis 94
 6.3.2. Photoluminescence studies 95
 6.3.3. Decay analysis 98
 6.3.4. Chromatic properties 99
6.3. CONCLUSIONS 101
REFERENCES 102

CHAPTER 7

COMPARISION OF RESULTS AND FUTURE SCOPE OF THE WORK 103

7.1. INTRODUCTION 104
7.2. RESULTS SUMMARY 105
7.3. FUTURE SCOPE OF WORK 108
REFERENCES 109

PUBLICATIONS RELATED TO THE THESIS WORK 110