LIST OF FIGURES

Figure 1.1 Resistance (Ω) versus Temperature (K) plot for Mercury, observed by Kamerlingh Onnes.

Figure 1.2 A normal conductor and a superconductor sample in an applied external magnetic field, the expulsion of magnetic field as a Meissner Effect.

Figure 1.3 (a) & (b) The typical behaviour of a type I & type II superconductor.

Figure 1.4 Six basic structures of FeAs compounds.

Figure 1.5 (a) Chequerboard pattern of Fe-As layer (b) Antiferromagnetic ordering The red arrows represent the magnetic moments, and the blue arrows indicate the directions of structural distortion.

Figure 1.6 (a) Phase diagram of CeFeAsO$_{1-x}$F$_x$, the anti-ferromagnetic and superconducting phase are marked with AFM and SC, (b) Phase diagram of fluorine doped LaO$_{1-x}$F$_x$FeAs, showing a sharp (first-order) change from spin-density-wave (SDW) anti-ferromagnetism to superconductivity as a function of fluorine content.

Figure 1.7 (a) Band structure calculation for LaFePO, the dashed line represents the zero energy of Fermi level. (b) Fermi surface in the first Brillouin zone centered around the Γ point.

Figure 1.8 (a) Fermi surface of LaFeAsO, (b) Fermi surfaces (FS) cut at the kz = 0 and π planes, respectively. The blue lines are original calculated FS, while red lines indicate the FS shifted by q = (π, π, 0).

Figure 1.9 Fe Spin direction.

Figure 1.10 (a) Structure LaFeAsO (b) The structural and magnetic phase diagram of CeFeAsO.

Figure 2.1 Schematic diagram to synthesis oxy-pnictide REFeAsO compounds.

Figure 2.2 (a) A schematic diagram of Bragg's diffraction phenomena (b) According to the 2θ deviation, the phase shift causes constructive (left figure) or destructive (right figure) interferences.

Figure 2.3 Rigaku Miniflex II X-ray diffractometer.
Figure 2.4 Schematic diagram of four probe measurement.
Figure 2.5 Experimental setup for resistivity measurement.
Figure 2.6 Photograph of heat capacity puck and the sample mounting station.
Figure 2.7 Quantum Design Physical Property Measurement System.
Figure 2.8 ACMS inset coil for PPMS.

Figure 3.1 Rietveld refinement for room temperature XRD pattern of various REFeAsO (RE= La, Pr and Gd).
Figure 3.2 The variation of lattice parameters and unit cell volume with ionic radius for different REFeAsO samples.
Figure 3.3 R(T) Plots for various REFeAsO (RE = Gd, Sm, La, Sm & La).
Figure 3.4 The magnetization versus temperature (M-T) dependence for LaFeAsO and PrFeAsO at 1000 Oe and 10 Oe field.
Figure 3.5 Specific heat of SmFeAsO sample (main panel); Enlarged view of specific heat of SmFeAsO in the low temperature range at H = 0 and 7 Tesla (inset 1) and Enlarged view of specific heat of SmFeAsO in the high temperature range (inset 2).
Figure 3.6 The Mössbauer spectra of LaFeAsO$_{1-x}$ measured at 95 K and 200 K.
Figure 3.7 (a) The Mössbauer spectra of SmAsFeO$_{0.9}F_{0.1}$ at 90 K and 4.2 K.
Figure 3.7 (b) The Mössbauer spectra of SmAsFeO$_{0.85}$ at 95 K and 4.2 K.
Figure 4.1 Rietveld refined room temperature X-ray diffraction pattern for NdFeAsO and NdFeAsO$_{0.80}F_{0.20}$ samples.
Figure 4.2 Temperature dependence of the resistivity ρ(T) of NdFeAsO$_{0.80}F_{0.20}$ sample and inset shows R(T) of the NdFeAsO sample.
Figure 4.3 The temperature dependence of the electrical resistance R(T)H of NdFeAsO$_{0.80}F_{0.20}$ sample in applied magnetic field from 0 to 14 Tesla.
Figure 4.4 Shows Ginzburg Landau (GL) equation fitted upper critical field for NdFeAsO$_{0.80}F_{0.20}$ sample at 90 %, 50 % and 10 % drop of resistance of the normal resistance.
Figure 4.5 Temperature variation of magnetic susceptibility M(T) in ZFC and FC situation for NdFeAsO$_{0.80}F_{0.20}$ sample at 50 Oe field.
Figure 4.6 M (H) of NdFeAsO$_{0.80}F_{0.20}$ sample at 2 and 5 K, inset shows the same at 4 K for higher fields.
Figure 4.7 AC susceptibility plot of real (χ') and imaginary (χ'') components of AC susceptibility as a function of temperature at the frequencies 33, 333, 999, 3333, 6666 & 9999 Hz for fixed amplitude at 10 Oe of NdFeAsO$_{0.80}$F$_{0.20}$ sample. Arrows indicate the increasing frequency values.

Figure 4.8 Plot of real (χ') and imaginary (χ'') components of the AC susceptibility versus temperature, measured in the NdFeAsO$_{0.80}$F$_{0.20}$ sample at the AC field amplitudes 1, 2, 4, 6, 8, 10, 12, 13 & 15 Oe at a fixed frequency 333 Hz.

Figure 4.9 Shows the J_c versus T_p behavior for NdFeAsO$_{0.80}$F$_{0.20}$ sample.

Figure 4.10 Specific heat of NdFeAsO$_{0.80}$F$_{0.20}$ sample (main panel). Lower inset shows the specific heat as C_p/T vs. T^2 and upper inset shows the enlarged view of specific heat of NdFeAsO$_{0.80}$F$_{0.20}$ in the low temperature range (below 20 K).

Figure 5.1 Observed and Rietveld room temperature XRD pattern for SmFeAsO and SmFeAsO$_{0.80}$F$_{0.20}$ samples.

Figure 5.2. Room temperature resistivity versus temperature (ρ-T) plot for SmFeAsO and SmFeAsO$_{0.80}$F$_{0.20}$ compounds.

Figure 5.3 $\rho(T)H$ Resistivity behaviour under applied magnetic field up to 13 Tesla for SmFeAsO$_{0.80}$F$_{0.20}$.

Figure 5.4 Upper critical field $H_{c2}(T)$ with temperature for superconducting SmFeAsO$_{0.80}$F$_{0.20}$ sample using Ginzburg- Landau (GL) equation.

Figure 5.5 The Arrhenius plot of resistivity at different field for SmFeAsO$_{0.80}$F$_{0.20}$ sample. The solid lines are linear fit of slope. Inset shows the magnetic dependence of TAFF activation energy, U_0.

Figure 5.6 Temperature dependence of magnetic susceptibility, $M(T)$ of SmFeAsO$_{0.80}$F$_{0.20}$ sample in both ZFC and FC situation under applied field of 10 Oe.

Figure 5.7 Isothermal magnetization loops $M(H)$ at 2, 5, and 10 K for superconducting SmFeAsO$_{0.80}$F$_{0.20}$ sample. Inset shows the first quadrant of $M(H)$ at 2, 5, and 10K for the same sample.

Figure 5.8 $M(T)$ plot of SmFeAsO$_{0.80}$F$_{0.20}$ normal state sample. $M(H)$ at 250 K for the same sample shown in inset.

Figure 5.9 Real (χ') and imaginary (χ'') components of AC susceptibility as a function of temperature for the various applied frequencies ranging from 33 to 9999 Hz at a fixed...
amplitude of 2 Oe for SmFeAsO$_{0.8}$F$_{0.2}$ sample. The increasing frequency values have been indicated by arrow sign.

Figure 5.10 Real (χ') and imaginary (χ'') components of the AC susceptibility versus temperature, measured in the SmFeAsO$_{0.8}$F$_{0.2}$ sample at the AC field amplitudes 1, 3, 5, 7, 9, & 11 Oe and at a fixed frequency 333 Hz. Inset show the J_c versus T_p behaviour for the sample.

Figure 5.11 Specific heat of SmFeAsO$_{0.8}$F$_{0.2}$ and SmFeAsO sample. In inset, comparisons of specific heat at low temperature of both samples.

Figure 6.1 Room temperature XRD pattern of superconducting and ground state PrFeAsO & PrFeAsO$_{0.8}$F$_{0.2}$ samples.

Figure 6.2 Resistivity plot verses temperature for the PrFeAsO & PrFeAsO$_{0.8}$F$_{0.2}$ samples synthesised by single step method. In inset, $d\rho/dt$ versus T curve shows Pr$^{3+}$ spin ordering at low temperature.

Figure 6.3 Resistivity behaviour for PrFeAsO$_{0.80}$F$_{0.20}$ under an applied field of 12 Tesla.

Figure 6.4 (a) Upper critical field H_{c2} versus T plots for PrFeAsO$_{0.80}$F$_{0.20}$ (b) Dependence of upper critical field H_{c2} (T) with temperature using Ginzburg-Landau (GL) equation for 90 %, 50 % and 10 % drop of normal resistivity.

Figure 6.5 (a) Isothermal magnetization loops M(H) in the first quadrant at 5, 10, 20 and 30 K for PrFeAsO$_{0.80}$F$_{0.20}$ superconducting sample (b) Isothermal magnetization loops M (H) at 5 and 50 K for the same sample.

Figure 6.6 DC magnetic susceptibility plots for PrFeAsO$_{0.80}$F$_{0.20}$ superconducting sample at zero field cool (ZFC) and field cooled (FC).

Figure 6.7 (a & b) Variation of MR with magnetic field (0-14 Tesla) at different temperature in (a) SmFeAsO (b) PrFeAsO samples.

Figure 6.8 (a) dMR/dH at 2.5 K and 100 K for SmFeAsO (b) dMR/dH at 20 and 100 K for PrFeAsO.
LIST OF TABLES

Table 1.1 Structural (T_S) and magnetic (T_{SDW}) transition temperatures for undoped 1111 parent compounds.

Table 1.2 Structural parameters for Rietveld refinement for SmFeAsO compound.

Table 3.1 Rietveld refined parameters for REFeAsO, Space group: $P4/nmm$.

Table 3.2 Lattice parameters and cell volume of REFeAsO.

Table 4.1 Rietveld refined structure parameters of NdFeAsO.

Table 4.2 Rietveld refined structure parameters of NdFeAsO$_{0.8}$F$_{0.2}$.

Table 6.1 Wyckoff position for PrFeAsO (Space group: $P4/nmm$).

Table 6.2 Rietveld refined parameters.