LIST OF CONTENTS

1. INTRODUCTION ................................................................. 1-3

2. REVIEW OF LITERATURE ...................................................... 4-15
   2.1 Peptidyl-prolyl cis-trans isomerases (PPlase)
   2.2 Cyclophilin inhibitors and immunosupression
   2.3 Role of cyclophilins in protein folding
   2.4 Types of cyclophilins and their localization
   2.5 Plant cyclophilins
   2.6 Increase in transcriptional levels of cyclophilin under abiotic stress conditions
   2.7 Role of cyclophilins in plant defense mechanism
   2.8 Role of cyclophilins in plant microbe interactions
   2.9 Other important functions of cyclophilins
   2.10 The PPlase activity assay
   2.11 Role of cyclophilins as molecular chaperons
   2.12 Plants and environmental stress
   2.13 Drought stress in plants
   2.14 Salinity stress

3. MATERIALS AND METHODS .................................................. 16-33
   3.1 Materials
       3.1.1 Chemicals and Reagents
       3.1.2 Plant genotypes
       3.1.3 Growth conditions
       3.1.4 Bacterial strains
       3.1.5 Plasmid vectors
           3.1.5.1 pBluescript SK +/-
           3.1.5.2 pET28a
           3.1.5.3 pRT 100
           3.1.5.4 pCAMBIA 1301.1
   3.2 Methodology
       3.2.1 In silico analysis
   3.2.2 Molecular biological methods
       3.2.2.1 Plasmid DNA isolation
       3.2.2.2 DNA sequencing
       3.2.2.3 Restriction digestion and ligation of fragments
       3.2.2.4 Fragment elution
       3.2.2.5 End filling
       3.2.2.6 Dephosphorylation
       3.2.2.7 Ligation
       3.2.2.8 Preparation of CaCl₂ competent cells
       3.2.2.9 Bacterial transformation
       3.2.2.10 Preparation of Agrobacterium electrocompetent cells
       3.2.2.11 Construction of plant expression vector
       3.2.2.12 Electro-transformation of Agrobacterium tumefaciens
       3.2.2.13 Construction of OsCyP into E.coli expression system
3.2.2.14 Genomic DNA isolation
3.2.2.15 Quantification of DNA
3.2.2.16 PCR analysis of putative transgenic rice plants
3.2.2.17 Extraction of total cellular RNA
3.2.2.18 Isolation of poly (A)^+ mRNA
3.2.2.19 Reverse transcriptase PCR
3.2.2.20 Northern Analysis

3.3 Protein and Immunological methods
3.3.1 Growth of E. coli and induction of OsCYP
3.3.2 Purification of recombinant OsCYP protein
3.3.3 Polyacrylamide gel electrophoresis of proteins
3.3.4 Commassie blue staining
3.3.5 Western blot analysis
3.3.6 Peptidyl prolyl cis-trans isomerase assay

3.4 Plant transformation methods
3.4.1 Agrobacterium pellet preparation
3.4.2 Agrobacterium mediated tobacco transformation
3.4.3 GUS assay
3.4.4 Surface sterilization of tobacco seedlings

3.5 Abiotic stress experiments to test the stress tolerance
3.5.1 Osmotic stress
3.5.2 Salt stress
3.5.3 Methyl Viologen (MV) treatment of leaf discs
3.5.4 Dehydration stress

4. RESULTS.................................................................................................. 34- 42

4.1 Sequence analysis and in silico characterization of OsCyP
4.1.1 Sequence analysis
4.1.2 Multiple sequence alignment of OsCYP with other plant cyclophilins
4.1.3 Functional domain
4.1.4 Phylogenetic relationship of OsCyP with other plant Cyclophilins

4.2 Construction of the OsCyP into bacterial expression vector
4.2.1 Overexpression and purification of the recombinant OsCYP protein
4.2.2 Western blotting for anti-CYP antiserum
4.2.3 Peptidyl prolyl cis-trans isomerase assay

4.3 Construction of plant expression vector for tobacco transformation

4.4 Agrobacterium-mediated transformation of tobacco

4.5 Molecular analysis of tobacco transgenic plants
4.5.1 Histological Analysis of transgenic plants
4.5.1.1 GUS assay

4.5.2 PCR analysis of putative transformants
4.5.3 RNA-gel blot analysis of transgenic plants

4.6 Abiotic stress
4.6.1 Salt stress tolerance of transgenic tobacco seedlings harboring cyclophilin
4.6.2 Effect of mannitol stress on transgenic plants
4.6.3 Performance of Cyclophilin overexpressing plants under Methyl Viologen treatment
4.6.4 Dehydration stress tolerance

5. DISCUSSION............................................................................................................. 43-48

5.1 Sequence analysis of cyclophilins
5.2 OsCyP protein expression and enzymatic assay
5.3 Agrobacterium mediated transformation
5.4 Effect of abiotic stress on OsCyP overexpressed transgenic plants
   5.3.1 Salt stress
   5.3.2 Mannitol stress
   5.3.3 Oxidative stress
   5.3.4 Drought stress

6. SUMMARY.................................................................................................................. 49-50

7. REFERENCES............................................................................................................. 51-66

LIST OF TABLES

Table 3.1 Media used in plant tissue culture experiments

LIST OF ILLUSTRATIONS

Figure 2.1 Schematic illustration of cis-trans isomerization of a peptidyl-prolyl bond.
Figure 2.2 A model for molecular interactions during Agrobacterium-mediated genetic transformation of plant cells
Figure 4.1 Rice cyclophilin sequence and deduced amino acid sequence.
Figure 4.2 Sequence alignment of cyclophilin gene with selected accessions across the plant kingdom
Figure 4.3 Sequence alignment of cyclophilin domain region with selected accessions across the plant, human and eukaryotes
Figure 4.4 Phylogenetic tree constructed based on the deduced amino acid sequence of different plant cyclophilins.
Figure 4.5 Physical map and restriction analysis of the pET + CyP expression construct
Fig 4.6 Expression and purification of the recombinant OsCYP protein from E. coli and western blotting

Figure 4.7 Peptidyl prolyl cis-trans isomerase assay (rotamase assay)

Figure 4.8 PCR amplification of OsCyP gene and restriction analysis of the plant expression construct.

Figure 4.8D Construction of plant expression vector for tobacco transformation

Figure 4.9 Schematic representation of tobacco transformation

Figure 4.10 PCR analysis of putative tobacco transformants

Figure 4.11 Northern analysis of T1 transgenic plants for detection of OsCyP transcripts

Figure 4.12 Effect of salt stress (200mM NaCl) on root growth

Figure 4.13 Effect of salt stress (300mM) on root growth

Figure 4.14 Effect of 200mM NaCl stress on tobacco transgenic plants

Figure 4.14A Effect of 300mM NaCl stress on tobacco transgenic plants

Figure 4.15 Effect of Mannitol on transgenic tobacco seedlings expressing OsCyP.

Figure 4.16 Effect of MV application on leaf discs of wild-type (WT), and OsCyP (T1) tobacco plants.

Figure 4.17 Loss of chlorophyll in MV-treated leaf discs from OsCyP transgenic and wild-type tobacco

Figure 4.18 Effect of drought stress (PEG 8000) on OsCyP transgenic tobacco plants

Figure 4.19 Effect of dehydration (10%PEG 8000) stress on tobacco transgenic plants.

Figure 4.20 Effect of dehydration (15%PEG 8000) stress on tobacco transgenic plants.