LIST OF FIGURES

Figure 1.1. Shape Memory Effect in Shape Memory Materials. 6
Figure 1.2. Pseudoelastic Effect in Shape Memory Materials. 7
Figure 3.1 Cantilever Beam with Force $p_0\sin(\omega t)$. 26
Figure 3.2 Schematic Diagram of Beam. 32
Figure 3.3 Experimental setup for Force Excitation Frequency of Cantilever Beam. 33
Figure 3.4. SHELL181 Geometry. 37
Figure 3.5. SOLID186 Structural Solid Geometry 38
Figure 3.6. COMBIN14 Geometry 38
Figure 3.7. Meshing of Cantilever Beam. 39
Figure 3.8. Boundary Condition Applied to Cantilever Beam. 40
Figure 3.9. Force Applied at Center of Cantilever Beam. 40
Figure 3.10. Amplitude of Vibration for 18.5 Hz using FEA. 41
Figure 3.11. Amplitude of Vibration for 19.5 Hz using FEA. 41
Figure 3.12. Amplitude of Vibration for 20.5 Hz using FEA. 42
Figure 3.13. Amplitude of Vibration for 21.5 Hz using FEA. 42
Figure 3.14. Amplitude of Vibration for 22.5 Hz using FEA. 43
Figure 3.15. Amplitude of Vibration for 23.5 Hz using FEA. 43
Figure 3.16. Amplitude of Vibration for 24.5 Hz using FEA. 44
Figure 3.17. Amplitude of Vibration for 25.5 Hz using FEA. 44
Figure 3.18. Block Diagram of Experimental Setup for Stiffness of SMA Spring. 47
Figure 3.19. Experimental Setup for Stiffness of SMA Spring. 47
Figure 4.1 Vibration Absorber 52
Figure 4.2 Block Diagram of Experimental Setup of Conventional Spring at Free End. 53
Figure 4.3 Cantilever Beam with Spring Mass System Modeled in ANSYS Software. 56
Figure 4.4. Amplitude of Vibration at 18.5 Hz for Conventional Spring using FEA. 56
Figure 4.5. Amplitude of Vibration at 19.5 Hz for Conventional Spring using FEA.

Figure 4.6. Amplitude of Vibration at 20.5 Hz for Conventional Spring using FEA.

Figure 4.7. Amplitude of Vibration at 21.5 Hz for Conventional Spring using FEA.

Figure 4.8. Amplitude of Vibration at 22.5 Hz for Conventional Spring using FEA.

Figure 4.9. Amplitude of Vibration at 23.5 Hz for Conventional Spring using FEA.

Figure 4.10. Amplitude of Vibration at 24.5 Hz for Conventional Spring using FEA.

Figure 4.11. Amplitude of Vibration at 25.5 Hz for Conventional Spring using FEA.

Figure 4.12 Block Diagram of Experimental Setup of One SMA Spring at Free End.

Figure 4.13. Amplitude of Vibration at 18.5 Hz for One SMA Spring using FEA.

Figure 4.14. Amplitude of Vibration at 19.5 Hz for One SMA Spring using FEA.

Figure 4.15. Amplitude of Vibration at 20.5 Hz for One SMA Spring using FEA.

Figure 4.16. Amplitude of Vibration at 21.5 Hz for One SMA Spring using FEA.

Figure 4.17. Amplitude of Vibration at 22.5 Hz for One SMA Spring using FEA.

Figure 4.18. Amplitude of Vibration at 23.5 Hz for One SMA Spring using FEA.

Figure 4.19. Amplitude of Vibration at 24.5 Hz for One SMA Spring using FEA.

Figure 4.20. Amplitude of Vibration at 25.5 Hz for One SMA Spring using FEA.

Figure 4.21 Block Diagram of Experimental Setup of Two SMA Springs in Parallel at Free End.
Figure 4.22. Amplitude of Vibration at 18.5 Hz for Two SMA Springs in Parallel using FEA.

Figure 4.23. Amplitude of Vibration at 19.5 Hz for Two SMA Springs in Parallel using FEA.

Figure 4.24. Amplitude of Vibration at 20.5 Hz for Two SMA Springs in Parallel using FEA.

Figure 4.25. Amplitude of Vibration at 21.5 Hz for Two SMA Springs in Parallel using FEA.

Figure 4.26. Amplitude of Vibration at 22.5 Hz for Two SMA Springs in Parallel using FEA.

Figure 4.27. Amplitude of Vibration at 23.5 Hz for Two SMA Springs in Parallel using FEA.

Figure 4.28. Amplitude of Vibration at 24.5 Hz for Two SMA Springs in Parallel using FEA.

Figure 4.29. Amplitude of Vibration at 25.5 Hz for Two SMA Springs in Parallel using FEA.

Figure 4.30 Block Diagram of Experimental Setup of Three SMA Springs in Parallel at Free End.

Figure 4.31. Amplitude of Vibration at 18.5 Hz for Three SMA Springs in Parallel using FEA.

Figure 4.32. Amplitude of Vibration at 19.5 Hz for Three SMA Springs in Parallel using FEA.

Figure 4.33. Amplitude of Vibration at 20.5 Hz for Three SMA Springs in Parallel using FEA.

Figure 4.34. Amplitude of Vibration at 21.5 Hz for Three SMA Springs in Parallel using FEA.

Figure 4.35. Amplitude of Vibration at 22.5 Hz for Three SMA Springs in Parallel using FEA.

Figure 4.36. Amplitude of Vibration at 23.5 Hz for Three SMA Springs in Parallel using FEA.

Figure 4.37. Amplitude of Vibration at 24.5 Hz for Three SMA Springs in Parallel using FEA.

Figure 4.38. Amplitude of Vibration at 25.5 Hz for Three SMA Springs in Parallel using FEA.
Figure 4.39 Block Diagram of Experimental Setup of Two SMA Springs in Series at Free End.
Figure 4.40. Amplitude of Vibration at 18.5 Hz for Two SMA Springs in Series using FEA.
Figure 4.41. Amplitude of Vibration at 19.5 Hz for Two SMA Springs in Series using FEA.
Figure 4.42. Amplitude of Vibration at 20.5 Hz for Two SMA Springs in Series using FEA.
Figure 4.43. Amplitude of Vibration for 21.5 Hz for 2 SMA Springs in Series using FEA.
Figure 4.44. Amplitude of Vibration at 22.5 Hz for Two SMA Springs in Series using FEA.
Figure 4.45. Amplitude of Vibration at 23.5 Hz for Two SMA Springs in Series using FEA.
Figure 4.46. Amplitude of Vibration at 24.5 Hz for Two SMA Springs in Series using FEA.
Figure 4.47. Amplitude of Vibration at 25.5 Hz for Two SMA Springs in Series using FEA.
Figure 4.48 Block Diagram of Experimental Setup of Three SMA Springs in Series at Free End.
Figure 4.49. Amplitude of Vibration at 18.5 Hz for Three SMA Springs in Series using FEA.
Figure 4.50. Amplitude of Vibration at 19.5 Hz for Three SMA Springs in Series using FEA.
Figure 4.51. Amplitude of Vibration at 20.5 Hz for Three SMA Springs in Series using FEA.
Figure 4.52. Amplitude of Vibration at 21.5 Hz for Three SMA Springs in Series using FEA.
Figure 4.53. Amplitude of Vibration at 22.5 Hz for Three SMA Springs in Series using FEA.
Figure 4.54. Amplitude of Vibration at 23.5 Hz for Three SMA Springs in Series using FEA.
Figure 4.55. Amplitude of Vibration at 24.5 Hz for Three SMA Springs in Series using FEA.
Figure 4.56. Amplitude of Vibration at 25.5 Hz for Three SMA Springs in Series using FEA.

Figure 5.1 Block Diagram of Experimental Setup of One SMA Springs at 450 mm from Fixed End.

Figure 5.2. Amplitude of Vibration at 18.5 Hz for One SMA Spring at 450 mm from Fixed End using FEA.

Figure 5.3. Amplitude of Vibration at 19.5 Hz for One SMA Spring at 450 mm from Fixed End using FEA.

Figure 5.4. Amplitude of Vibration at 20.5 Hz for One SMA Spring at 450 mm from Fixed End using FEA.

Figure 5.5. Amplitude of Vibration at 21.5 Hz for One SMA Spring at 450 mm from Fixed End using FEA.

Figure 5.6. Amplitude of Vibration at 22.5 Hz for One SMA Spring at 450 mm from Fixed End using FEA.

Figure 5.7. Amplitude of Vibration at 23.5 Hz for One SMA Spring at 450 mm from Fixed End using FEA.

Figure 5.8. Amplitude of Vibration at 24.5 Hz for One SMA Spring at 450 mm from Fixed End using FEA.

Figure 5.9. Amplitude of Vibration at 25.5 Hz for One SMA Spring at 450 mm from Fixed End using FEA.

Figure 5.10 Block Diagram of Experimental Setup of Two SMA Springs in Parallel at 450 mm from Fixed End.

Figure 5.11. Amplitude of Vibration at 18.5 Hz for Two SMA Springs in Parallel at 450 mm from Fixed End using FEA.

Figure 5.12. Amplitude of Vibration at 19.5 Hz for Two SMA Springs in Parallel at 450 mm from Fixed End using FEA.

Figure 5.13. Amplitude of Vibration at 20.5 Hz for Two SMA Springs in Parallel at 450 mm from Fixed End using FEA.

Figure 5.14. Amplitude of Vibration at 21.5 Hz for Two SMA Springs in Parallel at 450 mm from Fixed End using FEA.

Figure 5.15. Amplitude of Vibration at 22.5 Hz for Two SMA Springs in Parallel at 450 mm from Fixed End using FEA.

Figure 5.16. Amplitude of Vibration at 23.5 Hz for Two SMA Springs in Parallel at 450 mm from Fixed End using FEA.
Figure 5.17. Amplitude of Vibration at 24.5 Hz for Two SMA Springs in Parallel at 450 mm from Fixed End using FEA.

Figure 5.18. Amplitude of Vibration at 25.5 Hz for Two SMA Springs in Parallel at 450 mm from Fixed End using FEA.

Figure 5.19 Block Diagram of Experimental Setup of Three SMA Springs in Parallel at 450 mm from Fixed End.

Figure 5.20. Amplitude of Vibration at 18.5 Hz for Three SMA Springs in Parallel at 450 mm from Fixed End using FEA.

Figure 5.21. Amplitude of Vibration at 19.5 Hz for Three SMA Springs in Parallel at 450 mm from Fixed End using FEA.

Figure 5.22. Amplitude of Vibration at 20.5 Hz for Three SMA Springs in Parallel at 450 mm from Fixed End using FEA.

Figure 5.23. Amplitude of Vibration at 21.5 Hz for Three SMA Springs in Parallel at 450 mm from Fixed End using FEA.

Figure 5.24. Amplitude of Vibration at 22.5 Hz for Three SMA Springs in Parallel at 450 mm from Fixed End using FEA.

Figure 5.25. Amplitude of Vibration at 23.5 Hz for Three SMA Springs in Parallel at 450 mm from Fixed End using FEA.

Figure 5.26. Amplitude of Vibration at 24.5 Hz for Three SMA Springs in Parallel at 450 mm from Fixed End using FEA.

Figure 5.27. Amplitude of Vibration at 25.5 Hz for Three SMA Springs in Parallel at 450 mm from Fixed End using FEA.

Figure 5.28 Block Diagram of Experimental Setup of Two SMA Springs in Series at 450 mm from Fixed End.

Figure 5.29. Amplitude of Vibration at 18.5 Hz for Two SMA Springs in Series at 450 mm from Fixed End using FEA.

Figure 5.30. Amplitude of Vibration at 19.5 Hz for Two SMA Springs in Series at 450 mm from Fixed End using FEA.

Figure 5.31. Amplitude of Vibration at 20.5 Hz for Two SMA Springs in Series at 450 mm from Fixed End using FEA.

Figure 5.32. Amplitude of Vibration at 21.5 Hz for Two SMA Springs in Series at 450 mm from Fixed End using FEA.

Figure 5.33. Amplitude of Vibration at 22.5 Hz for Two SMA Springs in Series at 450 mm from Fixed End using FEA.
Figure 5.34. Amplitude of Vibration at 23.5 Hz for Two SMA Springs in Series at 450 mm from Fixed End using FEA.

Figure 5.35. Amplitude of Vibration at 24.5 Hz for Two SMA Springs in Series at 450 mm from Fixed End using FEA.

Figure 5.36. Amplitude of Vibration at 25.5 Hz for Two SMA Springs in Series at 450 mm from Fixed End using FEA.

Figure 5.37. Block Diagram of Experimental Setup of Three SMA Springs in Series at 450 mm from Fixed End.

Figure 5.38. Amplitude of Vibration at 18.5 Hz for Three SMA Springs in Series at 450 mm from Fixed End using FEA.

Figure 5.39. Amplitude of Vibration at 19.5 Hz for Three SMA Springs in Series at 450 mm from Fixed End using FEA.

Figure 5.40. Amplitude of Vibration at 20.5 Hz for Three SMA Springs in Series at 450 mm from Fixed End using FEA.

Figure 5.41. Amplitude of Vibration at 21.5 Hz for Three SMA Springs in Series at 450 mm from Fixed End using FEA.

Figure 5.42. Amplitude of Vibration at 22.5 Hz for Three SMA Springs in Series at 450 mm from Fixed End using FEA.

Figure 5.43. Amplitude of Vibration at 23.5 Hz for Three SMA Springs in Series at 450 mm from Fixed End using FEA.

Figure 5.44. Amplitude of Vibration at 24.5 Hz for Three SMA Springs in Series at 450 mm from Fixed End using FEA.

Figure 5.45. Amplitude of Vibration at 25.5 Hz for Three SMA Springs in Series at 450 mm from Fixed End using FEA.