A small consolation of common factors and processes often degrade fresh water ecosystems, especially lakes. Physical habitat alteration, chemical alteration or pollution of the water or introduction of new species of either fish, hydrophytes or plankton forms contribute to the main cause of deterioration of lakes (Abell et al., 2000). The process of eutrophication becomes evident when nutrients, particularly nitrogen and phosphorous are released into the lakes from surrounding agricultural areas. This is because of the run off of fertilizers in to the lakes or from towns and cities in the form of sewage (Bron Mark and Hanson, 1998). Nitrogen and phosphorous in higher levels trigger a chain of events that begin with a massive increase in the growth of primary producers, otherwise limited by scarcity of these in fresh waters. The process activities increase in periphytic algae and submerged macrophytes, these later decline and make way as phytoplankton and cyanobacteria increase in abundance which in turn reduces the amount of light penetration that may filter through the water. As a result dead organisms accumulate as sediment. Bacteria that could have removed minerals from decaying organic matter, consume large amount of dissolved oxygen. Sometimes during algal blooms oxygen level remain fairly high because of metabolic activities of huge photosynthesis. Oxygen depletion may lead to fish kill. Zooplankton that can graze phytoplankton also becomes reduced, as a result phytoplankton increase considerably and result in thick mat on the surface of water bodies. Turbidity of water increases reducing the penetration of sunlight, as eutrophication progresses
the biological community is altered and the lake declines in values as a source of domestic interest.

In the present study Algae are used effectively to assess the pollution status of the lentic habitats of Belgaum. The use of microalgae-based wastewater treatment has been shown to be effective in reducing the possibility of eutrophication and other ecological damage, particularly in tropical countries (Silva-Benavides and Torzillo, 2012). The pollution tolerant algae like Scenedesmus and Chlorella have been reported from all the water bodies in the present investigation have the potential to remediate Nitrates and Phosphates to the greater extent used and help in the conservation of the lakes. Hence constructing engineered tanks near the lakes and reducing the Nitrate and Phosphate levels by remediating with the pollution tolerant species can effectively contribute towards the conservation of these precious water bodies.

Feasible use of lake restoration are by the use of feeding type with immobilized heterogeneous microbes. Removal of sediment and reducing bloom forming algae can be of greatly contribute to restore lakes. Feeding banks of lake by planting to reduce water temperature. Biomanipulation at nutrient rich zones and maintaining TMDL and the use of nitrate and sulphate reducing bacteria for denitrification of lake water in specially created lagoons are the probable strategies to conserve and restore the lakes.