LITERATURE CITED

Bhatia IS and Deb SB. 1965. Nitrogen metabolism of detached tea shoots I. Changes undergone in amino acids and amides of tea shoots during withering. *Journal of Science Food and Agriculture* 16 : 759-769

following pre-harvest applications. Canadian Journal of Plant Science 82 : 485-489

Griffiths T and Mason D. 2003. Analysis of chlormequat and glyphosate residue levels in wheat grain. HGCA project report 299 : 4

Hara Y. 2001. Green tea: Health benefits and applications Marcel Dekker Incorporated

Hoagland RE and Duke SO. 1978. Glyphosate effects on phenylalanine ammonia-lyase activity and phenolic compounds production in maize seedlings. Abstracts of papers 175th American Chemical Society National meeting California

Hoagland RE. 1980. Effects of glyphosate on metabolism of phenolic compounds. VI. Effects of glyphosine and glyphosate metabolite on phenylalanine ammonia-lyase activity, growth, and protein, chlorophyll, and anthocyanin levels in soybean (Glycine max) seedlings. *Weed Science* 28 : 393-400

http://teaboard.gov.in/pdf/stat growers

http://www.epa.gov/pesticides/food

http://www.siligurionline.com/industry/tea.htm

http://www.epa.gov/pesticides/food

Osipov VI and Aleksandrova LP. 1986 b. Effect of glyphosate on quinic and shikimic acids in pine needles. *Fizilogiya Rastenii* 33 : 762-768

Pan X, Niu G and Liu N. 2003. Microwave assisted extraction of tea polyphenols and tea caffeine from green tea leaves. *Chemical Engineering Process* 42: 129-133

Roberts GR and Sanderson GW. 1966. Changes undergone by free amino acids during the manufacture of black tea. *Journal of Science Food and Agriculture* 17 : 182-188

Rubin JL, Gaines CG and Jensen RA. 1982. Enzymological basis for herbicidal action of
glyphosate. *Plant Physiology* 70 : 833-839

Rueppel ML, Brightwell BB, Schaeffer J and Marvel JT. 1977. Metabolism and
degradation of glyphosate in soil and water. *Journal of Agriculture and Food
Chemistry* 3: 517-528

30 : 463-466

Selvan VAS and Sivasamy P. 2009. Blending of clonal tea leaves with leaves from
seedlings in order to improve the quality of made tea. *American Eurasion
Journal of Scientific Research* 4: 148-153

Sergiev IG, Alexieva VS, Ivanov SV, Moskova II and Karanov EN. 2006. The
phenylurea cytokinin 4PU-30 protects maize plants against glyphosate action
Pesticide biochemistry and Physiology 85 : 139-146

Servaites JC, Tucci MA and Geiger DR. 1987. Glyphosate effects on carbon assimilation,
ribulose biphosphate carboxylase activity and metabolite levels in sugar beet

Review Toxicology 1 : 37-67

Sikorski JA and Gruys KJ 1997. Understanding glyphosate mode of action with EPSPS
synthase: evidence favoring an allosteric inhibitor model. *Account of Chemical
research* 30: 2-8

Simenson L, Fomsgaard IS, Svesmark BO and Spliid NH. 2008. Fate and availability of
glyphosate and AMPA in Agricultural soil. *Journal of Environmental Science
and Health Part B* 43: 365 -375

Singh BK and Shaner DL. 1998. Rapid determination of glyphosate injury to plants and
identification of glyphosate-resistant plants. *Weed Technology* 12 : 527-530

much to so many? *Oxford Survey Plant Molecular Cell Biology* 7: 14-185

Steinrucken HC and Amerhein W. 1980. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl shikimic acid-3-phosphate synthase. *Biochemical and Biophysical Research Communications* 94 : 1207-1212

Tea Board of India, 2009

Thompson DG, Pitt DG, Busacri TM, Staznik B and Thomas DR. 2000. Comparative fate of glyphosate and triclopyr herbicide in the forest floor and mineral soil
of an Acadian forest regeneration site. *Canadian Journal of Forest Research* 30: 1808-1816

