Chapter 5

J^Δ-Convexity

5.1 Introduction

In this chapter we mainly study the convexity induced by the J^Δ-transit function. We first characterise the J^Δ-convex hull similar to the J-convex hull due to Dutchet [17]. The chapter consists of four sections. In the first section we classify the graphs according to the number of non-trivial convex sets similar to the I-convexity and J-convexity. In section two we have made an attempt for the evaluation of J^Δ-convexity invariants like Caratheodory, Helley and Radon type partition numbers. Section three deals mainly with the concept of J-gated sets similar to the I-gated sets. We have proved that for HHD-free graphs the J-gated sets are precisely the I^Δ convex sets and hence the family of J-gated sets form a convexity for the HHD-free graphs.

Let $G = (V, E)$ be a connected graph. A V subset S separates two others A and B (say), when every path joining a vertex of A to a vertex of B encounters A. The subset S separates a set A and a vertex $v \notin A$ if it separates A and $\{v\}$. A complete subgraph of G is called a clique and a clique containing more than one vertex and different from V is called a nontrivial clique. A clique separating, two sets or a set and a vertex is called a clique separator. A path connecting a vertex $v \notin A$, a subset of $V(G)$, to a vertex $a \in A$ is called a $v - A$ path if a is the only vertex of A lying on the path.
Lemma 9 Let $G = (V, E)$ be a graph and $A \subseteq V$. Then a vertex $v \in V(G)$ is not an element of $< J^\Delta(A) >$ if and only if there exists a clique separator C separating v and A such that every $v - C$ path connecting two distinct vertices of C encloses an induced cycle of length greater than or equal to four.

Proof. Suppose $v \notin < J^\Delta(A) >$, then there exists a triangle induced path μ connecting v to a vertex a in A and a vertex x on μ such that $x \in< J^\Delta(A) >$, but the successor of x on μ, as we traverse from a to v along μ, is not in $< J^\Delta(A) >$. Let C be the set formed by the vertices like x. Evidently every $v - A$ path encounters C, hence C is a separator; separating v and A. If C contains only one vertex, we are done. So let us assume that C contains at least two vertices. Now take any two vertices x and y in C. We claim that x is adjacent to y. Suppose not, since x and y are elements of C, there exist two triangle induced paths μ_x and μ_y (say) connecting v to the two vertices of A, so that x is a vertex on μ_x and y is on μ_y. Let $xtyl$ be the chord from $x \rightarrow \mu_x \rightarrow v$ to $y \rightarrow \mu_y \rightarrow v$. Since x is not adjacent to y, either xt is different from x or yl is different from y. In this case xt and yl are vertices of the $x - y$ induced-path formed by the $x - xt$ subpath of μ_x, $y - yl$ subpath of μ_y and the edge $xtyl$. Hence $xt, yl \in< J^\Delta(A) >$, a contradiction. So C forms a clique. Let μ_1 and μ_2 be two $v - C$ paths connecting two distinct vertices x and y of C respectively, to v. Let xt be the immediate successor of x on μ_1 and yl be the immediate successor of y on μ_2. Evidently xt and yl are different. Hence μ_1 and μ_2 encloses an induced cycle of length greater than three. Conversely, let there exists a clique separator C, separating v and A as stated in the lemma. Let B be the component of $G \setminus C$ containing v. Then $V \setminus B$ is J^Δ-convex. For, if not we can find two vertices x and y in $V \setminus B$ and a vertex z on an $x - y$ triangle induced path P, so that $z \notin V \setminus B$. Therefore $z \in B$ and which implies $z \notin C$. Consider the $x - z$ subpath μ_x and the $y - z$ subpath μ_y of P. Since B is the component of $G \setminus C$, μ_x and μ_y must intersect C at some vertices u and w (say) respectively. If $u \neq w$, then uzw forms a triangle, since P is a triangle induced path and $u, w \in C$. Now consider the two paths connecting v to the vertices u and w obtained by extending μ_x and μ_y to v through some
convexity

v – z path. Clearly these two paths do not enclose an induced cycle of length greater than three, a contradiction. If \(u = w \), then \(C = \{ u \} \). Hence \(P \) is not a path, again a contradiction. So \(V \setminus B \) is \(J^\Delta \)-convex. Now, \(A \subseteq V \setminus B \) and therefore \(< J^\Delta(A) > \subseteq V \setminus B \). Hence \(v \notin < J^\Delta(A) > \). ■

Remark 8 If \(v \in V \) is not an element of \(< J^\Delta(A) > \), \(A \subseteq V \), it is possible to find a clique separator \(C \) separating \(v \) and \(A \) such that \(C \subseteq < J^\Delta(A) > \) and every vertex of \(C \) is the end vertex of some \(v - C \) path.

Remark 9 In the first paragraph of the proof, we have chosen \(x \) as a vertex on an \(A - v \) triangle induced path so that \(x \in < J^\Delta(A) > \) and its immediate successor is not in \(< J^\Delta(A) > \). But in this case \(x \) lies on an \(A - v \) induced path. Hence \(C \) can be redefined as the set of all vertices like \(x \) lying on some \(A - v \) induced path so that its immediate successor on the path is not in \(< J^\Delta(A) > \).

5.2 k-convex graphs

Classification of graphs according to the number of nontrivial convex sets has been attempted by various authors. In the case of \(I \)-convexity considerable study has been made by Hebbare, Acharya, Varthak, Rao, Batten, Parvathy etc. [1],[22],[23], [40] and [6]. A similar attempt for \(J \)-convexity has been done by Parvathy [39]. It has been proved that for a \(k \)-convex, triangle free and two connected graph, there is a positive integer \(n \) such that \((n - 1)(n + 2)/2 \leq k \leq 2^n - 2\). For the \(I \) and \(J \) convexities the cliques are trivially convex, so the classification of graphs according to the nontrivial convex sets is discussed with respect to the clique number \(\omega \). In \(J^\Delta \)-convexity, there is no role for the clique number \(\omega \), since the cliques need not be \(J^\Delta \)-convex. In \(J^\Delta \) convexity instead of the size of the clique, the number of non trivial clique separators play an important role. So we define a non trivial \(J^\Delta \)- convex set as one which is different from the empty set, singletons and \(V \). Mainly there are two types of \(k \)-convex graphs. One is the nested \(k \)-convex graphs, that is graphs in which the \(k \) nontrivial convex sets form a nested sequence. The other is the minimal
J^Δ-Convexity

k-convex graphs. A nontrivial J^Δ-convex subset is called minimal if it does not contain any nontrivial convex set properly. A graph which contains exactly k-minimal convex subsets is called a minimal k-convex graph. Both nested and minimal k-convex graphs have nice characterizations. They have been characterised by non trivial clique separators. There are also graphs belonging to neither of the two classes. A J^Δ convex set different from the empty set, singleton and V is called a nontrivial J^Δ convex set or simply a nontrivial convex set. A graph G is called a k-convex graph if it has exactly k nontrivial J^Δ-convex sets. A k-convex graph with nontrivial J^Δ convex sets C_1, C_2, \ldots, C_k is called a nested k-convex graph if $C_1 \subseteq C_2 \subseteq \ldots \subseteq C_k$. In other words a k-convex graph G is said to be nested if any two nontrivial convex sets of G are comparable. So a nested k-convex graph cannot have cut vertices. For graphs with number of vertices up to six, one can easily produce nontrivial noncomparable convex sets. But the graph shown below is nested 1-convex.

Hence for a nested k-convex graph, the minimum number of vertices is seven. Nested 1-convex graph is otherwise known as uniconvex graph. A J^Δ convex set is said to be minimal if it does not contain any non trivial convex set as its subset. A k-convex graph is called a minimal k-convex graph if all of its k non-trivial convex sets are minimal convex. Every minimal 1-convex graph is the same as a uniconvex graph. The smallest minimal 2-convex graph is P_3. This is the only minimal k-convex graph with three vertices. There is no minimal 3-convex graph with 4 or 5 vertices. The smallest minimal 3-convex graph is isomorphic to the graph obtained by deleting two consecutive leaves from W_6. Hence to have a minimal k-convex graph with $k \geq 3$, the minimum number of vertices is six.

For any positive integer $k \geq 4$ there is the minimal k-convex graph C_k.

Theorem 15 Let G be a connected graph with at least seven vertices. Then G is a nested k-convex graph if and only if G has exactly k non-trivial cliques $C_i, i = 1, 2, \ldots, k$ such that corresponding to each C_i, there is a non trivial component D_i of $G \setminus C_i$ satisfying (i). $D_{i+1} \subseteq D_i, i = 1, 2, \ldots, k - 1$. (ii). $< J^\Delta(C_i), D_i >$ is partition of $V(G)$, for $i = 1, 2, \ldots, k$. (iii) For any three
Proof. Let us prove the necessary part. Assume that G is a nested k-convex graph. Hence G has exactly k nontrivial convex sets B_i, $i = 1, 2, \ldots, k$ with the property that $B_1 \subset B_2 \subset \ldots \subset B_k$. For each $i = 1, 2, \ldots, k$, we can prove the existence of a nontrivial clique C_i and a unique component D_i of $G \setminus C_i$ satisfying

(α_1): $< J^\Delta(C_i) > = B_i$, for $i = 1, 2, 3, \ldots, k$.

(α_2): $(V(B_i), V(D_i))$ forms a partition of $V(G)$, for $i = 1, 2, \ldots, k$.

Let us start with the smallest nontrivial convex set B_1 of G and a vertex $d_1 \notin V(B_1)$. Since $d_1 \notin V(B_1)$, by the Lemma 9, there exists a clique separator $C_1 \subseteq B_1$, separating d_1 and B_1, such that

(a): every vertex of C_1 is an end vertex of some $C_1 - d_1$ path.
(b): any two $C_1 - d_1$ paths connecting two distinct vertices of C_1 contains an induced cycle of length greater than or equal to four.

Since G has no cutvertex $< J^\Delta(C_1) >$ is nontrivial and is contained in B_1. Hence $< J^\Delta(C_1) > = B_1$. Let D_1 be the component of $G \setminus C_1$, containing d_1. If possible, let F_1 be any other component of $G \setminus C_1$, containing a vertex $f_1 \notin V(B_1)$. Since $f_1 \notin V(B_1)$, by the Lemma 9, there exists a clique separator $K_1 \subseteq B_1$, separating f_1 and B_1 and satisfying conditions similar to (a) and (b). Every path connecting f_1 to a vertex of D_1 encounters C_1 and $C_1 \subseteq B_1$. Hence every path connecting f_1 to $C_1 \cup D_1$ encounters K_1. Hence K_1 acts as a clique separator separating f_1 and $C_1 \cup D_1$ and satisfying conditions similar to (a) and (b). So $f_1 \notin < J^\Delta(C_1 \cup D_1)$. Similarly, we can prove that the clique C_1 separates d_1 and $C_1 \cup F_1$ and satisfies conditions similar to (a) and (b). So $d_1 \notin < J^\Delta(C_1 \cup F_1)$. Thus we have two nontrivial noncomparable convex sets $< J^\Delta(C_1 \cup D_1) >$ and $< J^\Delta(C_1 \cup F_1) >$. This contradiction proves that all vertices of $G \setminus C_1$ which are not in B_1 lie in D_1. Also no vertex of D_1 lies in B_1. Hence $(V(B_1), V(D_1))$ forms a partition of $V(G)$.

Now consider any $i \geq 2$. We can find a vertex $d_i \in V(B_{i+1})$ so that $d_i \notin V(B_i)$. Here we take $V(B_{k+1}) = V(G)$. Since $d_i \notin V(B_i)$, there exists a clique separator $C_i \subseteq B_i$ separating d_i and B_i and satisfying conditions similar to (a) and (b). We can prove that C_i has vertices in common with $V(B_i) \setminus V(B_{i-1})$. Suppose not. Then $C_i \subseteq B_j$ for some $j \leq i - 1$. Take any vertex u in $V(B_i) \setminus V(B_{i-1})$. Then every path connecting u to a vertex in B_{i+1} encounters C_i. Moreover $u \notin < J^\Delta(C_i) >$, if not we get the contradiction $u \in < J^\Delta(C_i) > \subseteq B_j \subseteq B_{i-1}$. Hence by the Lemma 9, $u \notin B_{i+1}$ and which conflicts with the condition $B_i \subseteq B_{i+1}$. So C_i has a vertex in common with $V(B_i) \setminus V(B_{i-1})$. This shows that $< J^\Delta(C_i) >$ is not a subset of B_{i-1}.

Hence

$< J^\Delta(C_i) >= B_i - I$.
Let D_i be the component of $V \setminus C_i$ containing d_i. If possible, let F_i be another component of $V \setminus C_i$ containing a vertex $f_i \notin V(B_i)$. As in the case of D_1, we can easily produce the nontrivial noncomparable convex sets $< J^\Delta(C_i \cup D_i)$. $< J^\Delta(C_i \cup F_i)$. This contradiction shows that

$$(V(B_i), V(D_i))$$ forms a partition of $V(G)$—II.

Since $B_1 \subsetneq B_2 \subsetneq \ldots \subsetneq B_k$, I and II together proves conditions (i) and (ii) of the theorem. Now let us prove (iii).

Take any three vertices x, y and z of G. Suppose $z \notin < J^\Delta(x, y) >$. Hence $< J^\Delta(x, y) >$ is a nontrivial convex set. Therefore $< J^\Delta(x, y) > \subsetneq B_i$ for some i. So by (ii), $z \in D_i$. Evidently, by (i) and (ii), $< J^\Delta(C_1) > \subsetneq < J^\Delta(C_2) > \subsetneq \ldots \subsetneq < J^\Delta(C_k) >$. We can prove that $\{ < J^\Delta(C_i) > \}, i = 1, 2, \ldots, k$ are the only nontrivial convex subsets of G. Let C be any nontrivial convex set. Our first finding is that C cannot have a common vertex with D_k. Suppose C has a vertex (say) x in common with D_k. Since C is nontrivial, we can find another vertex y of C different from x. Since $x, y \in C$, we have $< J^\Delta(x, y) > \subsetneq C$. Since $x \in D_k$, $x \notin < J^\Delta(C_i) >$ for all $i = 1, 2, 3, \ldots, k$ by (ii). Hence by (iii), for all any $z \in V$, $z \in < J^\Delta(x, y) >$. So this gives the contradiction that $C = V$. Hence C has no vertex in common with D_k. Let j be the smallest integer so that D_j has no vertex in common with C. Hence

$$C \subsetneq < J^\Delta(C_j) >$$—III.

Now we can prove the other way of inclusion. By the choice of j, C has a vertex (say) u in common with D_{j-1}. Since $u \in D_{j-1}$,

$$u \notin < J^\Delta(C_{j-1}) >$$—IV

Take any vertex $v \in C$. Hence by III, $v \in < J^\Delta(C_j) >$. Since $u, v \in C$,

$$< J^\Delta(u, v) > \subsetneq C$$—VI.

Take
$z \in \langle J^\wedge(C_j) \rangle \quad \text{VII}$

Therefore

$z \notin D_j \quad \text{VIII}$

IV gives $u \notin \langle J^\wedge(C_{j-1}) \rangle, \langle J^\wedge(C_{j-2}) \rangle, \ldots$

$VIII$ gives $z \notin D_j, D_{j+1}, \ldots$ Hence by (iii),

$z \in \langle J^\wedge(u,v) \rangle \quad \text{IX}$

Therefore by VII and IX, $\langle J^\wedge(C_j) \rangle \subseteq \langle J^\wedge(u,v) \rangle$. Therefore by VI,

$\langle J^\wedge(C_j) \rangle \subseteq C \quad \text{X}$

Therefore by IV and X, $C = \langle J^\wedge(C_j) \rangle$. This completes the sufficiency part of the theorem.

Theorem 16 For every integer $k \geq 1$, there exists a nested k-convex graph H_k.

Proof. We use induction on k. Let D be the graph H_1 with two specified vertices u and v as shown in the figure 5.1(B).

Evidently the J^\wedge-convexity on D is trivial. Consider a K_2 with vertices u_1 and v_1. Let H_1 be the graph obtained by identifying the vertex pairs (u,u_1) and (v,v_1), so that K_2 and D remain as two edge disjoint subgraphs of H_1. Moreover $V(K_2) \cap V(D) = \{u_1,v_1\}$ and $V(D) \cup V(K_2) = V(H_1)$. Hence the graph H_1 which proves the proposition when $k = 1$.

Now suppose that $k \geq 2$ and H_k is a nested k convex graph. Hence it has exactly k non trivial convex sets $C_i, i = 1, 2, \ldots, k$ with $C_1 \subseteq C_2 \subseteq \ldots \subseteq C_k \subseteq V(H_k) \ldots \ldots \ldots \ldots \ldots \ldots$ (*).

Choose the vertices u_k and v_k of H_k so that $u_k \in V(C_k)$ and $v_k \in V(H_k) \setminus V(C_k)$. Since H_k is connected, without loss of generality we can assume that u_k is adjacent to v_k in H_k. Let H_{k+1} be the graph obtained by identifying the vertex pairs (u,u_k) and (v,v_k) so that H_k and D are two edge disjoint subgraphs of H_{k+1}. Moreover $V(H_k) \cap V(D) = \{u_k,v_k\}$ and $V(H_k) \cup V(D) = V(H_{k+1})$.

Claim I: Every subset of H_k which is convex in H_k is so in H_{k+1}. Let C be any convex subset of H_k.

Take any two vertices $x, y \in C$ and any triangle induced path P, connecting x and y in H_{k+1}. Suppose there is a vertex z on P such that $z \notin C$. Then $z \notin V(H_k)$, since C is a convex subset of H_k. Therefore $z \in V(D) \setminus \{u_k, v_k\}$. By the construction of H_{k+1}, P contains both u_k and v_k. But u_k is adjacent to v_k. Hence z is adjacent to both u_k and v_k. But no vertex in D is adjacent to both u_k and v_k. Hence $z \notin C$. So C is a convex subset of H_{k+1}. In particular $V(H_k)$ is a convex subset of H_{k+1}. If we consider $V(H_k)$ and any vertex $w \in V(D) \setminus \{u_k, v_k\}$, then by the construction, edge u_kv_k act as clique separator forbidding w to be an element of $V(H_k)$. So $V(H_k)$ is a nontrivial convex subset of H_{k+1}. Thus H_{k+1} has $k+1$ nontrivial convex subsets, $C_1 \subseteq C_2 \subseteq \cdots \subseteq C_k \subseteq V(H_k)$.

Claim II: The extension of the trivial convexity on D to H_{k+1} is the trivial convexity on H_{k+1}.

Let $< J^{\Delta}(A) >_G$ denote the J^{Δ}-convex hull of the subset A on the graph G. Evidently for any $x, y \in V(D)$, $V(D) \subseteq < J^{\Delta}(x, y) >_{H_{k+1}}$. Therefore $u_k, v_k \in < J^{\Delta}(x, y) >_{H_{k+1}}$. Therefore

$$< J^{\Delta}(u_k, v_k) >_{H_{k+1}} \subseteq < J^{\Delta}(x, y) >_{H_{k+1}} \quad (I).$$

Now $u_k, v_k \in V(H_k)$. Therefore $< J^{\Delta}(u_k, v_k) >_{H_k} \subseteq < J^{\Delta}(V(H_k)) >_{H_k}$. That is, $< J^{\Delta}(u_k, v_k) >_{H_k} \subseteq V(H_k)$, since $V(H_k)$ is convex in H_k. But $v_k \notin C_k$. Therefore $C_k \subseteq < J^{\Delta}(u_k, v_k) >_{H_k}$. Therefore $C_i \subseteq < J^{\Delta}(u_k, v_k) >_{H_k}$, for all $i = 1, 2, \ldots, k$. Therefore $< J^{\Delta}(u_k, v_k) >_{H_k} = V(H_k)$ since H_k is a nested k-convex graph. That is,

$$< J^{\Delta}(u_k, v_k) >_{H_{k+1}} = V(H_k) \quad (II).$$

From (I) and (II), we get $V(H_k) \subsetneq < J^{\Delta}(x, y) >_{H_{k+1}}$. Also $V(D) \subsetneq < J^{\Delta}(x, y) >_{H_k}$. Therefore $V(H_k) \cup V(D) \subsetneq < J^{\Delta}(x, y) >_{H_k}$. That is, $V(H_{k+1}) \subsetneq < J^{\Delta}(x, y) >_{H_{k+1}}$. Therefore $V(H_{k+1}) = < J^{\Delta}(x, y) >_{H_{k+1}}$. Hence the claim.
Claim III: Every nontrivial convex subset of H_{k+1} is a convex subset of H_k.

Let C' be a nontrivial convex subset of H_{k+1}. Suppose it has a vertex a in common with $D \setminus \{u_k, v_k\}$. Since C' is non trivial, it has another vertex b different from a. If b lies in $D \setminus \{u_k, v_k\}$, then by claim II, $C' = V(H_{k+1})$, a contradiction. If b is not a vertex of $D \setminus \{u_k, v_k\}$, then C' is connected. Without loss of generality we can assume that either b is u_k or v_k. Hence in this case also, by claim II, we can arrive at the same contradiction. Thus the only nontrivial convex subsets of H_{k+1} are $C_1 \subset C_2 \subset \ldots \subset C_k \subset (V(H_k))$.

Remark 10 In the construction of H_{k+1}, it is always possible to find $u_k, v_k \in V(H_k) \setminus V(C_k)$.

Theorem 17 If G is a minimal k-convex graph with $k \geq 3$, then G has no cut vertex.

Proof. Let G be a minimal k-convex graph with $k \geq 3$. Suppose G has a cut vertex v. Hence v has two neighbours u and w in G such that every $u - w$ path contains v. Hence by the Lemma 9, $u \not< J^\wedge(v, w)$ and $w \not< J^\wedge(u, v)$. Thus $< J^\wedge(v, w)>$ and $< J^\wedge(u, v)>$ are two distinct non trivial convex sets. Hence they are minimal convex subsets. Since $k \geq 3$, G has another minimal nontrivial convex set C different from $< J^\wedge(v, w)>$ and $< J^\wedge(u, v)>$. Now take any vertex $x \in C$. Then either every $x - u$ path contains v or every $x - w$ path contains v. Let us assume that every $x - u$ path contains v. Let $B = C \cup \{u, w\}$. Then every $u - B$ path contains v. Hence by the Lemma , $u \not< J^\wedge(B)$. So $< J^\wedge(B)>$ is a non trivial convex set. But it is not a minimal convex set as it contains C and $< J^\wedge(v, w)>$ properly, which is a contradiction. Hence the theorem. □

Theorem 18 Let G be a graph with at least six vertices. Then G is a minimal k-convex graph ($k \geq 3$) if and only if it has exactly k nontrivial cliques $C_i; i = 1, 2, \ldots, k$ with the properties (i) $i \neq j \rightarrow < J^\wedge(C_i) > < J^\wedge(C_j) >$. (ii) for $x, y, z \in V$, $z \not< J^\wedge(x, y) \Rightarrow x, y \in < J^\wedge(C_i) >$ and $z \not< J^\wedge(C_i) >$ for some i.
Proof. Let \(G \) be a minimal \(k \)-convex graph with \(k \geq 3 \). So \(G \) has exactly \(k \)-non trivial convex sets \(B_i \); \(i = 1, 2, \ldots, k \) such that the only convex sets properly contained in each \(B_i \) are singletons or emptyset. Since \(B_i \neq V \), there is a \(v \in V \setminus B_i \). Hence by the Lemma 9, there exists a clique separator \(C_i \subseteq B_i \) separating \(v \) and \(B_i \) such that any two \(v - C_i \) paths connecting two distinct vertices of \(C_i \) contains an induced cycle of length greater than or equal to four. Since \(k \geq 3 \), \(G \) has no cut vertex. Hence \(C_i \) contains more than one vertex. Therefore \(\langle J^A(C_i) \rangle = B_i \), for \(i = 1, 2, \ldots, k \). Since \(B_i \)'s are different, (i) follows. Now consider \(x, y, z \in V(G) \) and assume that \(z \notin \langle J^A(x, y) \rangle \). Hence \(\langle J^A(x, y) \rangle \) is a non trivial convex set. So by assumption \(\langle J^A(x, y) \rangle = B_i \) for some \(i \) and which proves (ii).

Conversely, assume that \(G \) contains \(k \) nontrivial cliques \(C_i \); \(i = 1, 2, \ldots, k \) satisfying (i): \(i \neq j \Rightarrow \langle J^A(C_i) \rangle \neq \langle J^A(C_j) \rangle \); (ii): For any \(x, y, z \in V(G) \), \(z \notin \langle J^A(x, y) \rangle \Rightarrow x, y \in \langle J^A(C_i) \rangle \), \(z \notin \langle J^A(C_i) \rangle \) for some \(i \). Then by (ii), it is evident that each \(\langle J^A(C_i) \rangle \) is a non trivial minimal convex subset of \(G \). Hence to complete the proof, it is enough to prove that if \(C \) is any nontrivial convex subset of \(G \), then \(C = \langle J^A(C_i) \rangle \), for some \(i \). For that our first claim is that \(C \cap V(G) \setminus \cup\{ \langle J^A(C_i) \rangle \mid i = 1, 2, \ldots, k \} = \emptyset \). Suppose not, then we can find \(x \in C \cap V(G) \setminus \cup\{ \langle J^A(C_i) \rangle \mid i = 1, 2, \ldots, k \} \) and which implies that \(x \notin \langle J^A(C_i) \rangle \) for all \(i \). Since \(C \) is nontrivial, \(C \) contains a vertex \(y \) different from \(x \). Hence by (ii) \(\langle J^A(x, y) \rangle = V \), a contradiction.

Now we can prove that \(C = \langle J^A(C_i) \rangle \) for some \(i \).

First we prove that for any two distinct vertices \(u \) and \(v \) of \(C \); \(u, v \in \langle J^A(C_i) \rangle \) for a unique \(i \).

Let \(u \) and \(v \) be any two distinct vertices of \(C \). Assume the contrary that for no \(i \), \(u \) and \(v \) belong to the same \(\langle J^A(C_i) \rangle \). Take any vertex \(w \in V \), then by (ii), \(w \in \langle J^A(u, v) \rangle \). Hence \(\langle J^A(u, v) \rangle = V \) and which gives the contradiction \(C = V \). So both \(u \) and \(v \) are vertices of \(\langle J^A(C_i) \rangle \), for some \(i \). Suppose \(u, v \in \langle J^A(C_j) \rangle \) for some \(j \neq i \). Then by the minimality of the nontrivial convex sets, we get \(\langle J^A(C_i) \rangle = \langle J^A(x, y) \rangle = \langle J^A(C_j) \rangle \). This contradicts (i). Hence any two vertices \(u \) and \(v \) of \(C \) lie in a unique...
< J^\Delta(C_i) >$. Therefore $< J^\Delta(u, v) > \subseteq < J^\Delta(C_i) >$. Hence by the minimality of the nontrivial convex set $< J^\Delta(C_i) >$ we get $< J^\Delta(u, v) > = C$. Hence $C = < J^\Delta(C_i) >$. This completes the sufficiency part.

5.3 Invariants

In general the I-convexity has no nice structure, so the invariants behave quite arbitrarily. For particular classes of graphs like Dismantlable graphs, some of the I-convexity invariants have been studied by Bandelt and Mulder [4], Bandelt [2] etc. In this section we prove that for J^Δ convexity the combinatorial parameters c, h and r are universal, in the sense that for any connected graph G, $c = 2$, $h = 2$ and $r \leq 4$. The Tverberg type partition number r_m for the J^Δ convexity has been computed by Changat et.al [11]. We also quote the result.

We start with the definition of the invariants for an abstract convexity C. The Carathéodory number c of the convexity space C is the smallest integer (if exists) such that for any finite subset S of V, $< S >_C = \bigcup\{ < F >_C | F \subseteq S, |F| \leq c \}$.

The Helly number h of C is the smallest integer (if exists) such that every family of convex sets with an empty intersection contains a subfamily of at most h members with an empty intersection. Equivalently, h is the smallest natural number such that $\bigcap_{s \in S} (S \setminus \{s\})_C \neq \emptyset$ for every $(h+1)$-element subset S of V.

The Radon number r of C is the smallest integer (if exists) such that every r-element set $A \subseteq V$ admits a Radon partition, that is, a partition $A = A_1 \cup A_2$, $(A_1 \cap A_2 = \emptyset)$ with $< A_1 >_C \cap < A_2 >_C \neq \emptyset$.

The m^{th} Radon number, denoted by r_m, is the smallest number (if exists) such that every r_m-element set $A \subseteq V$ admits a Radon m-partition, that is a partition of A into m pair wise disjoint subsets A_1, A_2, \ldots, A_m such that $< A_1 >_C \cap < A_2 >_C \cap \ldots \cap < A_m >_C \neq \emptyset$.

For a graph $G = (V, E)$, a V-subset A is said to be J^Δ-convexly independent, if $a \not\in < J^\Delta(A \setminus a) >$ for every $a \in A$ and A is J^Δ-convexly dependent otherwise.
Theorem 19 Let $G = (V, E)$ be a connected graph. Then the J^Δ convexity has the Caratheodory number 2.

Proof. Let A be any subset of V, let $x \in <J^\Delta(A)>$; if $x \in <J(A)>$, then clearly $x \in <J(B)>$, for some $B \subseteq A$ with $|B| \leq 2$, since the induced path convexity in G has Caratheodory number less than or equal to 2 ([17]). If $x \notin <J(A)>$, then without loss of generality, we can assume that x is a vertex lying on a J^Δ path joining two adjacent vertices of $<J(A)>$, (say) u and v. Then $u \in J(u_1, u_2)$ and $v \in J(v_1, v_2)$ where $u_1, u_2, v_1, v_2 \in A$. Suppose there exists an induced $u - u_1$ or $u - u_2$ path such that no vertex on it is adjacent to the one on an induced $v - v_1$, or $v - v_2$ path, then u, v belong to $<J(u_1, v_1)>$ or $<J(u_1, v_2)>$ or $<J(v_1, v_2)>$ or $<J(u_2, v_1)>$ or $<J(u_2, v_2)>$ as the case may be and hence we are done. Suppose there exist vertices on every induced $u - u_1$ and $u - u_2$ paths adjacent to vertices on every induced $v - v_1$ and $v - v_2$ paths. Take the first adjacent pairs of vertices w_1, w_1', w_2, w_2' on an induced $u - u_1$, $v - v_1$, $u - u_2$ and $v - v_2$ paths as we traverse from u_1, v, u_2 and v, respectively. Then the path formed by the union of the induced paths $u_1 - w_1, w_1' - v_1, w_1' - v, v - w_2', w_2' - v_2, w_2 - u_2$ is an induced $u_1 - u_2$ path containing x. Therefore, $u, v \in <J(u_1, u_2)>$ and hence $x \in <J^\Delta(u_1, u_2)>$. ■

Since an abstract convexity with Carathéodory number 2 satisfies the JHC property, We have the important corollary which we used to prove the Theorem 13 of Chapter 4.

Corollary 2 The J^Δ convexity satisfies the JHC property.

Theorem 20 Let $G = (V, E)$ be a connected graph with at least two vertices. Then the Helly number h and the Radon number r of the J^Δ convexity of G are given by $h = 2$ and $3 \leq r \leq 4$.

Proof.

First we prove $r \leq 4$. We will show that any 4-point set $A = \{u_1, u_2, u_3, u_4\} \subseteq V$ has a Radon partition and that there are connected graphs G in which there
J\triangle - Convexity

are 3-point sets with no Radon partition. Assume that \(A \) is J\triangle - convexly independent (if \(a \) is J\triangle - convexly dependent then \(A \) has a Radon partition). There are two cases.

Case 1: \(< J\triangle(A) >\) does not contain any triangle.

In this case, every J\triangle path between two vertices in \(A \) is an induced path between the vertices. Therefore, \(< J\triangle(B) > = < J(B) >\), for every subset \(B \) of \(A \). By Radon’s theorem for the induced path convexity, \(A \) has a Radon partition for the induced path convexity and hence \(A \) has a Random partition for the J\triangle - convexity.

Case II: \(< J\triangle(A) >\) contains at least one triangle.

In this case, at most one vertex of \(A \) can be a vertex of a triangle in \(< J\triangle(A) >\), since if at least two vertices of \(A \) can form the vertices of a triangle in \(< J\triangle(A) >\), then \(A \) is J\triangle - convexly dependent. Thus no two of the four vertices \(u_1, u_2, u_3, u_4 \) form an edge of a triangle in \(< J\triangle(A) >\). If \(A \) has no Radon partition then the shortest \(u_1, u_2, u_2 - u_3, u_3 - u_4, u_4 - u_1 \) paths induce a chordless cycle of length at least 4 contained in \(< J\triangle(A) >\), which is a contradiction and hence \(A \) has a Random partition. To prove that \(h = 2 \), we have \(h \leq 3 \), by Levi’s inequality, \((h \leq r - 1) [28] \). Clearly \(h \geq 2 \). Let \(A = \{u_1, u_2, u_3\} \) be any 3-point subset of \(V \). If \(A \) is J\triangle - convexly dependent, then clearly \(\cap\{< J\triangle(A \setminus a) > | a \in A \} \neq \emptyset \). So assume that \(A \) is J\triangle - convexly independent. Then as in the proof of the first part, at most one vertex of \(A \) can be a vertex of a triangle in \(< J\triangle(A) >\). Now, if \(\cap\{< J\triangle(A \setminus a) > | a \in A \} = \emptyset \), then the shortest \(u_1 - u_2, u_2 - u_3, u_3 - u_1 \) paths induce a chordless cycle of length at least 4 and hence we get that \(A \) is convexly dependent, which is a contradiction. Thus it follows that \(h = 2 \), completing the proof. \(\blacksquare \)
5.4 J-gated sets

In this section we focus our attention on J-gated sets. The notion of I-gated sets in graphs has been studied by Mulder [35], Bandelt [2] etc. It has been proved that the family of I-gated sets form a convexity in any connected graph and is finer than the I-convexity [35]. In fact it has been shown in [35] that the family of I-gated sets form a convexity generated by the transit function

\[F(u, v) = \{ z \in V | I(u, z) \cap I(z, v) = \{ z \} \}. \]

The notion of R-gated sets for any transit function \(R \) is introduced by Mulder [35]. Since our main investigation in the thesis is about J-transit functions, we have made an attempt to study the J-gated sets. We can easily prove that the family of J-gated sets need not form a convexity. A natural question is, for which graphs the family of J-gated sets form a convexity. So it is interesting to study the family of J-gated sets for particular classes of graphs. As we have considered \(HHD \)-free graphs quite often in this thesis, we examine whether the J-gated sets for \(HHD \)-free graphs form a convexity. The answer is in the affirmative and further we have proved that the J-gated sets are precisely the \(I^\Delta \)-convex sets for the \(HHD \)-free graphs. The characterisation of graphs for which the J-gated sets form a convexity still remains as an unsolved problem.

\textit{J-gated sets:} Let \(W \) be a subset of \(V(G) \) and \(z \) be a vertex of \(G \) not in \(W \). A vertex \(x \) in \(W \) is a \textit{J-gate} for \(z \) in \(W \) if \(x \) lies in \(J(z, w) \) for all \(w \) in \(W \). The set \(W \) is called \textit{J-gated} if every vertex \(z \) not in \(W \) has a unique \textit{J-gate} in \(W \). \(V \) and \(\emptyset \) are \textit{J-gated} trivially. Singleton subset \(\{ v \} \) of \(V \) is \textit{J-gated} since \(v \) itself is the unique gate of every \(w \neq v \).

We can give other examples.

Example 1. Consider the cycle \(C_n(n \geq 5) \) with vertices \(1, 2, \ldots n \). Then the subset \(\{ 3, 4, \ldots n \} \) is J-gated since 3 is the gate of 2 and \(n \) is the gate of 1.
J^\Delta-Convexity

Example 2. Consider $C_n(n \geq 5)$ as in the previous example. Then the subset $\{4, 5, 6, \ldots, n\}$ is not J-gated since 2 has two gates, namely, 4 and n. Hence 2 has no unique gate.

Example 3. Consider a C_3 with vertices x, y and z. Then the set $\{y, z\}$ is not J-gated since x has no gate in the set.

Remark 11 The family of J-gated sets of a graph need not form a convexity. For, consider the subsets $\{3, 4, \ldots, n\}$ and $\{1, 4, 5, \ldots, n\}$ in C_n of Example 1. They are J-gated sets of C_n, but their intersection $\{4, 5, 6, \ldots, n\}$ is not J-gated.

Theorem 21 Let G be a HHD-free graph. Then the J-gated sets are precisely the I^Δ-convex sets.

Proof. Let C be a J-gated subset of G. We claim that C is J-convex. Suppose not, then there exists two distinct vertices x and y in C and a vertex z on some $x-y$ induced path P, such that $z \notin C$. Choose x and y so that x and y are the only vertices of P lying in C. So, without loss of generality, we can assume that z is the neighbour of x on P. Then x is the J-gate of z in C. Therefore $x \in J(z, y)$. Since G is HHD-free, J satisfies the two betweenness axioms and which leads to the contradiction $z \notin J(x, y)$, hence the claim. Since J-convex sets are I-convex, C is I-convex. Now we can prove that C is I^Δ-convex. Let xt and yt be any two vertices of C and zt be any vertex on any $x-y$ triangle shortest path Qt. Let Qut be the corresponding $x-y$ geodesic. If z is on Qut then $z \in C$, since C is I-convex. If z is not on Qut, then we can find two neighbours xt and yt of z on Qut such that z is adjacent to both xt and yt. Then xt, yt $\in C$. So if $z \notin C$, it has no J-gate in C, which is false. Hence C is I^Δ convex. Now let us prove the converse. Assume that C is I^Δ-convex. Let w be any vertex not in C. Define $L = \{c \in C | J(w, c) \cap C = \{c\}\}$. Take any vertex $c \in C$. Suppose $C \cap J(c, w) \neq \{c\}$. Then we can find a vertex $c_1 \in C$ and different from c. So that $c_1 \in C \cap J(c, w)$. Since G is HHD free, $c_1 \in J(c, w) \implies c \notin J(c_1, w)$ and
$J(c_1, w) \subseteq J(c, w)$. Hence $|J(c_1, w)| < |J(c, w)|$. Now consider $J(c_1, w) \cap C$. If it contains vertices other than c_1, we can find a vertex $c_2 \neq c_1$, such that $c_2 \in J(c_1, w) \cap C$. Then by the same argument given above $|J(c_2, w)| < |J(c_1, w)|$. Now continuing this argument, we get a sequence $c_1, c_2 \ldots$ of vertices of C satisfying $|J(c_1, w)| > |J(c_2, w)| > \ldots$. Since C is finite, eventually we get a vertex c_m. So that $|J(c_m, w)| = 1$. Then $c_m \in L$. Therefore L is non-empty.

We claim $|L| = 1$.

Suppose not, then we can find two distinct vertices $c_1, c_2 \in L$. Since $c_1 \in L$, $J(w, c_1) \cap C = \{c_1\}$. Hence c_2 is not on any $w-c_1$ induced path. Similarly c_1 is not on any $w-c_2$ induced path. Let P be a c_1c_2 geodesic, then all the vertices of P are in C, since C is I-convex. Let P_1 be a c_1-w induced path and P_2 be a c_2-w induced path. Then c_1 is not on P_2 and c_2 is not on P_1. Let us assume that w_1 is the first vertex common to P_1 and P_2 as we traverse from c_1 to w along P_1. Now $P_1 \cup P$ is a $w-c_2$ path containing c_1. Hence $P_1 \cup P$ cannot be an induced path. So there exists a chord uv from $c_2 \rightarrow P \rightarrow c_1$ to $w \rightarrow P_1 \rightarrow c_1$; $u, v \neq c_1$. Then $c_2 \rightarrow P \rightarrow u \rightarrow v \rightarrow P_1 \rightarrow w$ is a c_2-w induced path containing $u \in C$.

Since $J(w, c_2) \cap C = \{c_2\}$, $u = c_2$. Since $v \in P_1$, $v \notin C$. Now consider the cycle $c_2 \rightarrow P \rightarrow c_1 \rightarrow P_1 \rightarrow v \rightarrow c_2$. To avoid a long cycle, there exists a chord u_1v_1 from $c_1 \rightarrow P \rightarrow c_2$ to $c_1 \rightarrow P_1 \rightarrow v$. Then $C_I: c_1 \rightarrow P \rightarrow u_1 \rightarrow v_1 \rightarrow P_1 \rightarrow c_1$ is an induced cycle. Hence it is of length 3 or 4. But, it cannot be of length 3, since if it is of length 3, then we get $v_1 \in I^2(c_1, u_1) \subseteq C$ which is a contradiction as v_1 is vertex on P_1. Therefore C_I is of length 4. Now consider the cycle $u_1 \rightarrow P \rightarrow c_2 \rightarrow v \rightarrow P_1 \rightarrow v_1 \rightarrow u_1$. Since this cycle cannot be a long cycle, there exists a chord u_2v_2 from $u_1 \rightarrow P \rightarrow c_2$ to $v_1 \rightarrow P_1 \rightarrow v$. Then $C_{II}: u_1 \rightarrow P \rightarrow u_2 \rightarrow v_2 \rightarrow P_1 \rightarrow v_1 \rightarrow u_1$ is an induced cycle. Hence it is of length 3 or 4. Hence the subgraph induced by the vertices of C_I together with C_{II} is either a house or a domino, a contradiction. Hence the claim.
Let $L = \{c\}$. Now we can prove that c is the gate of w. Let x be any vertex in C. Assume that $c \notin J(w, x)$. Let P be an $x - c$ geodesic, then as we have already stated, all the vertices of P are in C. Let P_I be a $w - c$ induced path. Then $P \cup P_I$ is an $x - w$ path containing c. Hence there exists a chord uv from $c \rightarrow P \rightarrow x$ to $c \rightarrow P_I \rightarrow w$. Since $v \notin C$, the induced cycle $c \rightarrow P \rightarrow u \rightarrow v \rightarrow P_I \rightarrow c$ is of length four. If $d(c, u) = 2$, then $v \in I(c, u) \subseteq C$, a contradiction. If $d(c, u) = 1$, then $w \rightarrow P_I \rightarrow v \rightarrow u \rightarrow c$ is an induced path. Hence $u \in J(w, c)$ and $u \in C$, a contradiction. So c is the gate of w, which completes the proof. ■