# Table of Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>List of Publications</td>
<td>xi</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xiii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>xiii</td>
</tr>
<tr>
<td>Abbreviations and Symbols</td>
<td>xvii</td>
</tr>
<tr>
<td><strong>CHAPTER 1: Introduction; Motivation &amp; Literature Survey</strong></td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Nature of the universe we live in</td>
<td>3</td>
</tr>
<tr>
<td>1.3 The Space-Time Geometry</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Einstein Field Equations</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Scientific evidences for Variable constant of Gravitation ‘G’</td>
<td>7</td>
</tr>
<tr>
<td>1.6 Basic of Cosmology</td>
<td>9</td>
</tr>
<tr>
<td><strong>CHAPTER 2: Finslerian Geometrical model corresponds to the Anisotropic Space – Time with theory of Expanding Universe</strong></td>
<td>11</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>11</td>
</tr>
<tr>
<td>2.2 Finsler Geometry v/s Riemannian geometry</td>
<td>12</td>
</tr>
<tr>
<td>2.3 Theory of Expanding Universe</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Variable Cosmological Constant</td>
<td>15</td>
</tr>
<tr>
<td>2.5 Bianchi Classification</td>
<td>18</td>
</tr>
<tr>
<td>2.6 Cosmological Applications</td>
<td>21</td>
</tr>
</tbody>
</table>
CHAPTER-3: Certain connections of Randers conformal of Finsler space with anisotropic cosmological models

3.1 Introduction
3.2 Basic assumptions & considerations
3.3 Generalization of result with different assumptions
3.4 Anisotropic cosmological model with Randers conformal of Finsler spaces
3.5 Concluding Remarks

CHAPTER-4: Cosmological models of Finsler spaces with cubic metric

4.1 Introduction
4.2 Generalization of result with suitable assumptions
4.3 The Carton Torsion Coefficients
4.4 Anisotropic Cosmological model with Finsler metric $L(\gamma, \beta)$ with additional requirement
4.5 Concluding Remarks

CHAPTER-5: Accelerated expansion of the universe with dynamical Cosmological Constant $\Lambda(t)$

5.1 Introduction
5.2 The Metric and basic Equations
5.3 Solution of Field Equations
5.4 Some Physical & Geometrical Properties
5.5 State Finder Diagnostic
5.6 Concluding Remarks
CHAPTER-6: Exact Solution to Einstein Field Equations for spatially homogeneous and anisotropic universe with variable Parameters

6.1 Introduction 67
6.2 The Metric and Field Equations 69
6.3 Solution of Field Equations 72
6.4 Result & Discussion 75
6.5 Concluding Remarks 82

CHAPTER-7: Concluding Remarks & Future aspects 84

7.1 Concluding Remarks 84
7.2 Characteristic of Anisotropic Model 86
7.3 Cosmological Consequences 89
7.4 Future aspects 90

References 91
**ABBREVIATIONS AND SYMBOLS**

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R$</td>
<td>Scale factor</td>
</tr>
<tr>
<td>$t$</td>
<td>Cosmic time</td>
</tr>
<tr>
<td>$c$</td>
<td>Speed of light</td>
</tr>
<tr>
<td>$G$</td>
<td>Newton’s Gravitational constant</td>
</tr>
<tr>
<td>$\Lambda$</td>
<td>Cosmological constant</td>
</tr>
<tr>
<td>$H$</td>
<td>Planck’s constant</td>
</tr>
<tr>
<td>$g^{ij}$</td>
<td>Inverse metric tensor</td>
</tr>
<tr>
<td>$P$</td>
<td>Density of the universe</td>
</tr>
<tr>
<td>$g_{ij}$</td>
<td>Metric tensor</td>
</tr>
<tr>
<td>$H_0$</td>
<td>Hubble’s constant</td>
</tr>
<tr>
<td>$H$</td>
<td>Hubble parameter</td>
</tr>
<tr>
<td>$R_{ij}$</td>
<td>Ricci tensor</td>
</tr>
<tr>
<td>$K$</td>
<td>Curvature index</td>
</tr>
<tr>
<td>$p$</td>
<td>Pressure</td>
</tr>
<tr>
<td>$q$</td>
<td>Deceleration parameter</td>
</tr>
<tr>
<td>$T_{ij}$</td>
<td>Energy-momentum tensor</td>
</tr>
<tr>
<td>$x^i$</td>
<td>Spatial coordinate</td>
</tr>
<tr>
<td>$\beta$</td>
<td>Constant; $0 \leq \beta \leq 1/3$</td>
</tr>
<tr>
<td>$u^i$</td>
<td>4-Velocity</td>
</tr>
<tr>
<td>$G_{ij}$</td>
<td>Einstein tensor</td>
</tr>
<tr>
<td>$</td>
<td>g_{ij}</td>
</tr>
<tr>
<td>$\Gamma^i_{jk}$</td>
<td>Cristoffel symbol</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>$V$</td>
<td>Speed of the recession of galaxies</td>
</tr>
<tr>
<td>$D$</td>
<td>Proper distance (Distance of galaxies from us)</td>
</tr>
<tr>
<td>$\Omega$</td>
<td>Density parameter</td>
</tr>
<tr>
<td>$C$</td>
<td>Carton Tensor</td>
</tr>
<tr>
<td>$h_{ij}$</td>
<td>Angular metric tensor</td>
</tr>
<tr>
<td>$L$</td>
<td>Lagrangian Function</td>
</tr>
<tr>
<td>$S_{jikh}$</td>
<td>S- Curvature Tensor</td>
</tr>
<tr>
<td>$\sigma(x)$</td>
<td>Conformal factor</td>
</tr>
<tr>
<td>$j(t)$</td>
<td>Jerk parameter</td>
</tr>
<tr>
<td>SNAP</td>
<td>Super Novae Acceleration Probe</td>
</tr>
<tr>
<td>$\Lambda$CDM</td>
<td>Lambda cold dark matter</td>
</tr>
<tr>
<td>$A_m$</td>
<td>Anisotropic Parameter</td>
</tr>
<tr>
<td>$\sigma$</td>
<td>Shear scalar</td>
</tr>
<tr>
<td>$\theta$</td>
<td>Expansion scalar</td>
</tr>
<tr>
<td>$\rho_v$</td>
<td>Vacuum energy density</td>
</tr>
<tr>
<td>$\rho_c$</td>
<td>Critical density</td>
</tr>
<tr>
<td>$\rho_{eff}$</td>
<td>Uniform mass density</td>
</tr>
<tr>
<td>S N Ia</td>
<td>Ia Supernovae observation</td>
</tr>
<tr>
<td>GUT</td>
<td>Grand unified theory</td>
</tr>
<tr>
<td>F-R</td>
<td>Finsler – Randers</td>
</tr>
</tbody>
</table>