APPENDICES ...
APPENDIX: No 1

CONTENT ANALYSIS OF AGRICULTURAL VIDEO PROGRAMMES
I. Tanjore Wilt in Coconut (Cocos nucifera)

Symptoms of Tanjore Wilt in Coconut Trees
- Appearance of decayed roots
- Appearance of leaf scars
- Exudation of liquid from the base of trees
- Drying up of the barks of the trees
- Withering of leaf petioles
- Falling of small undeveloped nuts
- Appearance of fungus called 'Kadella'

How to control Tanjore Wilt in coconut trees
- Digging a pit around the tree attacked by the wilt disease
- Application of 40 lt of 1% Bordeaux mixture three times a month continuously for a period of four months
- Injection of Aureo fungin mixture into the trees
 (or)
- Inject Aureo fungin mixture into the roots
- Application of 50 kg of farmyard manure, green leaf manure and 5 kg of neem cakes
- Irrigate the trees uniformly

II. Coconut Cultivation

How to select seeds.
- Selection of bearing mother trees
- Age of mother trees between 25 to 40 years
- Selection of mother trees yielding 100 nuts/tree/year
- Selection of tree having 20 to 40 leaves on its crown
- Burying the selected seed nuts in the river sand
- Drenching of seed nuts in Bordeaux mixture before sowing

Points to be borne in mind while selecting the seedlings for planting
- Early sprouting of coconut seeds
- Selection of seedlings sprouted between 4½ to 6 months
- Selection of seedlings of 9-12 months old
- Selection of seedlings having 4 to 6 leaves
Points to be considered at the time of planting
- Spacing between the trees at 25ft each other.
- The size of the pits 1m x 1m x 1m
- Filling up of the pits with red soil, sand and farmyard manure for about 30 cm height
- Trimming of roots and dipping them in Bordeaux mixture and planting at the centre of the pit
- Provision of shade for the planted seedlings

Maintenance
- Application of fertilizers from the first year planting
- Application of fertilizers twice in a year from the 4th year of planting
- Application of fertilizers in the drench formed around the bearing tree
- Irrigation to be given at an interval of 10 to 15 days

Inter-cropping in coconut gardens
- Raising of intercrops during pre-bearing stage
- Raising of intercrops like gingely, groundnut, sunflower and other similar oil seed crops
- Raising of cowpea (*Vigna radiata*), black gram (*Phaseolus mungo*), and allied crops.
- Raising of sorghum (*Sorghum halapens*), pearl millet (*Pennisetum typhoides*)
- Planting of tapioca in the vacant areas
- Raising of vegetable crops like brinjal (*Solanum melongina*), chilli (*Capsicum annuum*)
- Raising of intercrops during pre-bearing stage and after 20 years
- After 20 years planting of (*Citrus aurantifolia*) and turmeric (*Curcuma longa*)
- Accural of additional income by raising intercrops
- 30% increased yield
- Irrigation and manuring to be given separately for intercrops and coconuts

Hybrid coconuts
- Veppankulam hybrid 1
- Veppankulam hybrid 2
- Tall variety yields 60 nuts/year
- Highest yield of 120 to 150 nuts from hybrid coconuts
- Tall variety commences yield from sixth year onwards
- Hybrid coconuts begin to yield from fourth year onwards
- Hybrid coconut trees give yields up to 50 years
- Generally 100 to 120 g of copra may be obtained from tall varieties
- In hybrid coconuts, a copra of 150-180 g may be obtained
- Hybrid coconuts gives 5% more oil than tall varieties
III. Composed Coirpith

Preparation
- Selection of raised plots.
- Level the plots of 5m x 3 m.
- Spread of 100 kg of coconut coir-pith
- Spread over it one bottle of mushroom spawn.
- Again make a layer over it with 100 kg of coconut coir-pith.
- Sprinkle one kg of urea over it.
- Make layers of coirpith, mushroom spawn and coirpith - urea alternatively till a height of 1m is reached. It can be utilized after one month.

Advantages
- Protects environment
- Gives enriched manure to crops.
- Good for rainfed crops.
- Enhances the soils power to retain water
- Enhances water holding capacity of the soil
- Prevents chances of developing cracks in black soil
- Helps the growth of groundnut (*Arachis hypogea*) and tapioca.
- Good also for irrigated crops.

IV. Seed Hardening in Groundnuts (*Arachis hypogea*).

Reasons for decreasing yield in groundnut
- Selection of unsuitable land for groundnut cultivation
- Use of substandard and disease infested seeds
- Not maintaining proper population of plants per unit area
- Deficiency of "boron" causing single seed groundnuts
* Hardening of seeds is done to prevent the yield of decline

How to harden groundnuts?
- Make use of one screen with 10.2 mm diameter to separate the right kind of seeds.
- Remove all disease infected seeds.
- Make use of a screen with a diameter of 7.2 mm to separate the seeds.
- Remove the seeds without seed coat or damaged seed coat.
- 50 kg of seed are required to sow 1 acre.
- Soak the seeds in 0.5% calcium chloride solution before sowing.
- Spread the seeds over the wet gunny bags and cover them with wet gunny bags.
- Keep them as such for 24 hours.
- Separate the sprouted seeds.
- Unsprouted seeds are to be treated and covered again with wet sacks.
- Repeat the process of separating the sprouted seeds 3 times at an interval of 3 hours.
- Seeds sprouted during 30-32 hours, and seeds without abnormal growth are separated from the rest and dried under shade.
- Well dried seeds may be kept for 5-6 days and then sown.
V. Groundnut grading

Experiments to access the standard of groundnut seeds

Experiment I
- Soak 50 groundnut seeds in water for 6 hours
- Continuously for 6 hrs.
- If the water is clean then the seeds are standard ones.
- If the water is turbid and muddy then the seeds are sub-standard ones.

Experiment II
- Take 500 seeds and soak them in water for 6 hrs.
- Then keep them covered in a dark room for 16 hrs.
- Separate the sprouted seeds from the unsprouted.
- Out of 500, if 400 seeds are sprouted then the seeds are considered standard ones.
- If 250 to 300 seeds are sprouted then the seeds are considered to be sub-standard.

Points to be borne in mind while sub standard seeds are sown
- Recommended seed rate 50 kg/acre necessary plus 10 kg seeds
- Keep them in a gunny bag and tie the gunny bag loose.
- Soak the bag in water for 6 hrs.
- Keep it in a dark room for 12 hrs and cover it with a wet a gunny bag.
- Separate the sprouted seeds and dry them under shade for 3 hrs.
- Keep the un-sprouted seeds in a wet gunny bag for 2 to 3 hrs and covered.
- Again separate the sprouted seeds.
- Keep on separating the sprouted seeds once in 3 hrs.
- Seeds are treated with 2g of 'Thiram' per kilo of sprouted seeds and sow the seeds within 2 days.

Results
- when sprouted seeds are used for sowing, number of plants per unit area could be maintained.
- Unsprouted seeds 15 to 20 kg can be used as food or for oil without being wasted.
- Sprouted seeds compensate the expenditure incurred for "separating".
- We get an additional income of Rs. 1000/- acre.

VI. Groundnut cultivation

How to harden groundnuts?
- Make use of one screen with 10.2 mm diameter to separate the right kind of seeds.
- Remove all disease infected seeds
- Make use of a screen with a diameter of 7.2 mm to separate the seeds.
- Remove the seeds without seed coat or damaged seed coat
- 50 kg of seed are required to sow 1 acre
- Soak the seeds in 0.5% calcium chloride solution before sowing
- Spread the seeds over the wet gunny bags and cover them with wet gunny bags
- Keep them as such for 24 hours
- Separate the sprouted seeds
- Unsprouted seeds are to be treated and covered again with wet sacks
- Repeat the process of separating the sprouted seeds 3 times at an interval of 3 hours.
- Seeds sprouted during 30-32 hours, and seeds without abnormal growth are separated from the rest and dried under shade

- Well dried seeds may be kept for 5-6 days and then sown

Points to be borne in mind while sub standard seeds are sown
- Recommended seed rate 50 kg/acre necessary plus 10 kg seeds
- Keep them in a gunny bag and tie the gunny bag loose.
- Soak the bag in water for 6 hrs.
- Keep it in a dark room for 12 hrs and cover it with a wet gunny bag.
- Separate the sprouted seeds and dry them under shade for 3 hrs.
- Keep the un-sprouted seeds in a wet gunny bag for 2 to 3 hrs and covered.
- Again separate the sprouted seeds.
- Keep on separating the sprouted seeds once in 3 hrs.
- Seeds are treated with 2g of 'Thiram' per kilo of sprouted seeds and sow the seeds within 2 days.

Agronomic Practices
- Land may be ploughed 5 to 6 times.
- Lose soil is preferable.
- If the soil is hard, five tonnes of farmyard or composed coirpith per acre may be applied.
- Soil must be tested and the recommended fertilizers may be applied.
- Enriched farmyard, manure is ideal.
- 4 kg Rhizobium per acre is optimum.
- Application Rhizobium helps to collect nitrogen.
- A mixture of 25kg sand, 25kg cowdung and 4kg rhizobium needed per acre may be applied
- Use sowing implement
- Must be sown in order
- The number of crops must be protected.
- 33 plants per sq meter is ideal.
- Seeds that have not sprouted even after 10 days must be replaced with new ones.
- On the 45th day 80 kg gypsum may be applied
- Required quantity of green manure, phosphorus and potash must be applied.
- Sulphur and calcium content of the gypsum prevents **seedless pods**.

Weed Control in Groundnut
- There is 60% yield reduced due to weeds.
- Late sprouting and stunted growth of the plant help the weeds to grow faster.
- Weeds complete with the main crop in respect of nutrients, moisture and sunlight.
While using weedicide, the following must be borne in mind
- Recommended dosage of weedicide must be used.
- In the sprayer, fan and reflector nozzles must be used for uniform spraying
- Weedicides control the weeds only for 30-35 days.

Advantages
- Hardened seeds increase the ability of sprouting and increasing the suitability of planting
- An yield of 700-800 kg/acre

VII. Agronomic Practices and Weed Control in Groundnut
- Land may be ploughed 5 to 6 times.
- Lose soil is preferable.
- If the soil is hard, five tonnes of farmyard or composed coirpith per acre may be applied.
- Soil must be tested and the recommended fertilizers may be applied.
- Enriched farmyard, manure is ideal.
- 4 kg Rhizobium per acre is optimum.
- Application Rhizobium helps to collect nitrogen.
- A mixture of 25kg sand, 25kg cowdung and 4kg rhizobium needed per acre may be applied.
- Use sowing implement
- Must be sown in order.
- The number of crops must be protected.
- 33 plants per sq. meter is ideal.
- Seeds that have not sprouted even after 10 days must be replaced with new ones.
- On the 45th day 80 kg gypsum may be applied
- Required quanity of green manure, phosphorus and potash must be applied.
- Sulphur and calcium content of the gypsum prevents seedless pods.

Weed Control in Groundnut
- There is 60% yield reduced due to weeds.
- Late sprouting and stunted growth of the plant help the weeds to grow faster.
- Weeds complete with the main crop in respect of nutrients, moisture and sunlight.

Weeds

Leucerne (Medicago sativa) - Multi season weed multiples about 10,000 weeds.

Grasses (Dianthus annulatum and Cyanodon dactylon) are perennial weeds

Kunjampul - Found in saline soil

Cyperus rotundus - Permanent weed
- Spreads through roots and seeds.
- Couldn’t be controlled by any weedicide.

Panicum mileaccum - A plant produces out 3000-6000 seeds.
Mukkuruttai — (Boerhaevia diffusa) 10,000 seeds.
This weed is capable of producing 2000-10,000 seeds.
It produces seeds within four weeks.

Greens — (Digeria arvensis) — Spreads through seeds.

Kandankathari — Multiseason weed. Spreads through seed and stem. It comes into being from a 1cm stem.

Basella — (Besella alba) and
Parthenium — (Parthenium hysterophorus) — Grows in all places.

While using weedicide, the following must be borne in mind
- Recommended dosage of weedicide must be used.
- In the sprayer, fan and reflector nozzles must be used for uniform spraying
- Weedicides control the weeds only for 30-35 days.

VIII. Control of Red Hairy Caterpillar in Groundnut

Different stages of Red Hairy Caterpillar
- Egg - stage
- Larval stage
- Pupal stage (This stage may last for 6 to 7 months)
- Fully developed stage.

Infestation of Red Hairy Catterpillar on Crops
- Immediately after the receipt of rainfall the pupal stage develops into a fully grown butterfly.
- Eggs are deposited over the leaves of groundnuts up and down.
- Larva emerging out of the eggs feed on the leaves.
- After 10 days the larva starts moving and eat all the leaves.
- Those larva surviving after 10 days develop red coloured hairs, all over the body.
- When the hairs grow, mobility of the larva also increases. They eat all the leaves.
- Without leaves the plant cannot synthesize food, production of fruits is much less and to yield is drastically affected.
- Red hairy caterpillar attack one field and then they move to the next field.
- Attack will be greater in the months of April and May.

Control Measures
- These red hairy caterpillars move towards the shade beneath the plants at 12 noon and during hot sun. They can be collected manually and destroyed.
- Integrated pest management may be adopted.
- Summer ploughing has to be done.
- Dig pits all round the field and fill them with calotropis plants which attract caterpillars and are destroyed easily.
- They can also be destroyed by collecting their eggs.
- By using pesticides they can be destroyed.
- By cultivating pearl millet sorghum, castor and other catch crops the red hairy catterpillars can be controlled.

How to control Leaf Roller Groundnuts?

Stages in the life of leaf roller

- These insets lay nearly 200 eggs on the groundnut plants.
- Within 3 days the eggs hatch and they become larva.
- The larval head is black and the body is green.
- The larval stage lasts for about 9 to 17 days.
- The pupal stage lasts for about 3 to 7 days.
- Butterfly will live for 5 to 6 generations.
- Soya bean (*Soya glycimema*), Red gram (*Cajanas cajan*) are also crops susceptible to these pest.
- They are found mostly during the months of September and October.

Control Measures

- Simultaneous sowing of seeds should be undertaken by farmers
- Light traps may be used to collect and destroy them.
- By raising spreading groundnut they can be destroyed.
- By raising pearl millet as an inter crop.
- When two leaf roller are found in a plant apply pesticides immediately at the recommended level.
- They can be picked up by undertaking summer ploughing and destroyed.

IX. Paddy Cultivation

In India, Tamil Nadu occupies the second place in Paddy production.

Before sowing

- Seeds should be pre-treated and prepared for sowing.
- Pre-treated seeds are free from diseases.
- Blast can be prevented and controlled upto 40 days.

To prevent the attack of Nematodes

- Dry the seeds in the sun for six hours a day for two days or for three days.
- Mix two gram 'Thiram' with one kilo of seeds and sow them after 24 hours.

How to apply micro nutrients to the seeds?

For every kilo of seeds, mix 40g ferrous sulphate or zinc sulphate and soak them in water for 10 hours before sowing.
Management of nurseries
- Use only sprouted seeds for sowing.
- Drain the water 18 to 24 hours before sowing.
- To control aphids use 38% monocrotophos as per recommended dosage.
- Endosulphan is recommended to control swarming caterpillar.
- Leaf webber is controlled by using either monocrotophos or quinalphos at the recommended dosage.

Planting of paddy seedlings
- Plant the seedlings at the proper season.
- Before planting, dip the roots of the seedlings in a solution of five packets of Azospirillum in 40 litres of water for about 30 minutes.
- This helps the seedlings to absorb nitrogen.
- Plant the seedlings in such a way that the roots do not go below 3cm level. This will enable the plants to establish and grow well.
- Do not mix up other chemical manures with Azospirillum.

X. Green Leaf Manure for Rice Cultivation
- Bestania was introduced in Tamil Nadu during 1985.
- Root nodules are found not only on the roots but also on the stems.

Seeds of green leaf manure plants
- High percentage of germination. Because of the hard seed coats germination of those is affected slightly.
- To increase germination capacity, the seeds have to be treated with concentrated sulphuric acid for about 30 minutes and then washed with water before sowing or soak the seeds in 50°C hot water at for 5 minutes and then be sown.
- Scarification of seeds of the green leaf manure plants with sand to rupture to seed coats.
- Due to rupturing the seed coat germination capacity is increased.

Double crop wetlands
- Danicha is the best suitable green leaf manure plant for double crop wet land.
- These plants give nitrogen 50 to 55 days after sowing
- Seed rate is 20kg/acre.
- Plough the field after sowing the seeds for the first crop.
- We get 4 tonnes of green manure from one acre.
- An increased yield of 200kg of paddy due to application of this green leaf manure

Single crop wet lands
- Daincha can also be raised in single crop wet lands.
- Daincha yields 6 to 7 tonnes of green leaf manure.
- The crops gets upto 45 kg of nitrogen.
- Cost of cultivation is reduced.
- Yield increases more by 300 to 350 kg of paddy/acre.
Cultivation of green leaf manure plants along with paddy
- When rice planting is undertaken Philippines sesbania (*Sesbania grandiflora*) may be raised in the vacant spaces found between the furrows.
- When the green leaf manure plant grows above the paddy, the excess height of the plants can be trimmed and used as manure.
- When the plants grow again, they can be used for the second crop.
- We get 5 tonnes of green leaves.
- We get 25 kg of nitrogen.
- Raising green leaf manure plants along with the first crop rice yield will be reduced by 8%.
- But the yield of the second crop increased by 19%.

Advantages
- Soil is also enriched with nitrogen
- Prevents reduction of yield.
- Increases yield by 500 to 1000kg.
- Philippines sesbania may be raised 40 days after planting paddy.

Green leaf manure in wet land rice cultivation
- *Sesbania* species is suitable for wet paddy cultivation as a green leaf manure.
- Plant 20 days old seedlings of *sesbania* species in the vacant spaces between the furrows.
- Before 45 days, they may be uprooted and ploughed into the soil.
- We will get 1½ tonnes green leaf manure.
- When nitrates are readily available.
- We get 1½ tonnes of paddy more per acre.

Cultivation in field bunds
- Philippines sesbania, Daincha, and Sunnhemp are suitable for cultivation on the field bunds as green leaf manure.
- Sow the seeds from the bottom of the bunds for 1/3 available area or from the top for a quarter of the available area.
- With in 40 days the top portions of the plants may be cut and used as manure.
- When it sprouts again, it can be used for the second crop.

XI. Banana Cultivation

Points to be considered for selection of banana suckens
- Select three months old suckers with sward-shaped leaves.
- Sward suckers proximal close to the mother plant should be selected.
- Three months old suckers should be selected.
- Three months old suckers normally have 9 to 12 leaves.
- Mean weight of the suckers for planting should be 1½ to 2½kg.
- Select the suckers from disease free gardens.
Points to be borne in mind while planting of suckers
- Examine whether the suckers are affected by nematodes. Nematode free suckers should be planted.
- Trimming off the roots of the suckers.
- Longitudinal section of the Nematode infested roots exhibit dark red colour in the cortex region.
- Remove the nematode infested roots.
- Before planting, dip the rhizome clay slurry in and sprinkle 40 g Furadon granules over them.

Symptoms of Wilt Disease in Banana
- Rasthali is commonly infested with wilt disease
- Symptoms of wilt disease will be known within 8 to 9 month of planting.
- Yellow leaf margins are founds in the wilt affected plants
- At the 8 and 9 month leaves will break and will be hanging down.
- The trees will develop splits at the bottom region and emanate fowl smell.
- The roots will be in a decayed condition.
- This is due to a kind of fungus.

Control of Wilt Disease
- Inject 3 ml of carbendacin into the central portion of the corn before the attack of the disease.
- Repeat the treatment during 2nd, 4th and 6th month.

Bunchy Top Virus in Banana

Symptoms
- Leaves are bunched together into a rosette at the top
- Pale leaves appear with dry margins
- The leaves break easily when folded
- Dark brown streaks are found in abundant

Spread of the Bunchy Top Disease
- Virus is transmitted through aphids

Control of Bunchy Top Disease
- The disease affected plantd should be removed from the garden and burnt.
- Control Aphids pest.
- Inject monocrotophos (25%) with the help of hypodermic syringe for every 45 days, 3 months from the date of planting.
- After flowering use of this pesticide should be stopped
XII. Enriched Farmyard Manure

Advantages

- The phosphorus is easily available to the crops.
- The crops do not suffer setbacks.
- High yield could be obtained.

Preparation (Per acre)

Materials required

- 300 kg of farmyard manure.
- 25 kg of super phosphate.
- 9 kg of urea.
- 35 kg of potash.

How to prepare

- Mix 300 kg of farmyard manure with 25 kg of phosphate.
- Keep this mixture air tight by covering it with diluted soil.
- After 15 days again plough the manure pit so that the ingredients get mixed once again.
- Again keep this product air tight by covering it with diluted soil.

After 30 days
Mix the farmyard manure prepared as above with 9 kg of urea, 25 kg of potash and apply in the field during the last ploughing.

XIII. Activated Clay for Pulses and Dry Farming

Activated clay for pulses

- To control the attack of insects on pulses, 'Captan' or 'Thiram' may be used for the treatment of seeds.
- Excess unused treated seeds may be washed and used as and when necessary.
- Mixture of 100 kg of seeds with 1 kg of white clay is known as activated clay for pulses.
- The cost works out to 5 to 6 paise per kg of activated clay.
- Activated clay protects the seeds for about 6 months.

Dry farming

- In our country 60% of the cultivation is dry farming.
- Therefore there is the need to collect rain water.
- Rain water can be collected by ploughing the field in the summer.
- Soil erosion can be prevented by cultivating grasses like vettiver (*Vitteveria zizanoides*).
- Application of enriched farmyard manure to dry farming increases the yield and expenditure is reduced.
- Biofertilizers can be applied to dry farming.
- In Tamil Nadu that bio fertilizers are used more than in any other states in India.
- Azospirillum helps the roots to go deep and collect nitrogen for the plants.
- Expenditure on manure is reduced.
- In dry farming, it is necessary collect rain water in the field itself.
- Mango or cashew nut (Anacardium occidentale) trees can be raised in fields where it is not possible to collect rain water to an appreciable extent.
- Mango, sapota (Achras zapote), guava and similar trees can be raised in the orchards and high income can be obtained.
- Guava, sapota and similar trees generate yield at the 5th or 6th year and onwards.

XIV. Rhizobium for Trees

Rhizobium

Plants collect nitrogen from the air for their growth with the help of a bacteria called rhizobium.

Advantages
- Protects natural environment.
- There will be an increase of 10-30% yield.
- Seeds treated with rhizobium culture germinate early and growth is rapid.

How to use rhizobium manure?

Method I
- Seeds having hard seed coat can be treated with acid or hot water so that the hardness of the seed coat is lessened.
- Mix 1 kilo of rhizobium with 250 ml of cold gruel and sprinkle over 8 kg of seeds.
- Mix them well.
- Spread these seeds over gunny bags and keep them in under shades and dry them.
- Then sow the seeds.

Method II

Materials Required
1 kg of rhizobium, 20 kg of soil mixture and 40 polythene covers.

Preparation
- Add 20 kg soil with 1 kg of rhizobium and mix them well.
- Fill the polythene covers with this mixture.
- Pour water in these bags.
- Next day sow the treated seeds in these bags.
Important Points for Consideration
- Bacterial manures should be mixed with only cold gruel.
- If the seeds are treated with acid, wash the seeds till the acid is completely removed and then dry them before mixing with the bio-fertilizer.
- Sow the seeds within 24 hours of their being mixed with the bio-fertilizer and dried.

XV. Mushroom Cultivation

I. Materials Required
- Paddy straw
- Implements to cut the straw into pieces
- Cement pot
- Boiler
- Hearth
- Gunny screen
- An iron net basket
- Polythene bags (60 x 30 cm)
- Small polythene bags
- Plastic plate
- A rod bent at one end
- Mushroom spawn
- Lotion

Preparation of straw for mushroom beds
- Cut the straw into 3 to 5 cm pieces.
- Keep them immersed in cold water for 5 hrs.
- Change the straw to the iron net and drain the water.
- Boil the dried straw for about ½ an hour.
- Again drain the straw in the iron net.
- Sprinkle water and straw over a clean gunny screen and make it dry.
- Dry them till wetness disappears
(When straw is taken, rinsed water should not be dripping).

Preparation of mushroom beds
- Leave 2 pieces of cloth in 60 x 30 cms polythene bags.
- Tie the bottom of the bags with gunny threads
- Clean the bottle containing the seeds, the plastic plate and iron rod with 'dettol' solution.
- Keep the spawn in the bottle and spread over to plastic plate using the iron rod.
- Divide them into 8 equal parts.
- Fill the polythene bag with a layer of 5 cm straw.
- Sow one portion of the spawn divided over the straw.
- Spread a layer of 10 cm straw.
- Again a portion of the spawn is sown over it.
- Prepare beds for all the four portions.
- Each time shake well the polythene bag.
- The mouth of the bag is tied with jute thread.
- Keep the materials in the room intended for sowing the mushroom spawn.
- Each bag may weigh 2.5 kg.
- Sowing the spawn will take 12 to 15 days.
- After the 15th day change the polythene bags to the rooms intended for growing mushrooms.
- From the 3rd day onwards spray water over the beds.
- Before spraying water, harvest the grown up mushrooms.
- After the harvest, rub the mushroom beds for about 1 cm deep.
- Harvesting will be completed between 40-45 days.

Common Points for Consideration
- Mushroom beds must be kept neat and clean.
- Humidity should be even in the mushroom beds.
- Before watering fill up with river sands 30 to 45 cm deep.
- Cover them round with gunny screens before sprinkling water.
- Fill the harvested mushrooms in polythene bags with holes.
- Harvested mushrooms will last only for a day. In refrigerators they will last for three days.