SUMMARY AND
CONCLUSION
V SUMMARY AND CONCLUSION

The study is an attempt to analyse the stores management system followed in the textile mills in Coimbatore district. Data were collected from different samples, namely, from the store keepers / purchase officers / managers of the three segments of the textile mills which were classified as high spindlage mills, medium spindlage mills and low spindlage mills using a specially constructed interview schedule.

A sample of 75 storekeepers / purchase officers / managers from the same number of mills in Coimbatore district constituted the sample for the study. The summary of the significant findings are presented hereunder.

The analysis on availability of a separate stores department in the textile mills showed that 69 mills surveyed had separate stores department and 6 mills did not have a separate stores department.

The analysis on the average lead time for purchases showed that 68 per cent of the mills had an average lead time of less than 7 days; 5.3 per cent of mills had an average lead time of 8 - 14 days; 17.3 per cent of mills had an average lead time of 15 - 21 days; and 9.3 per cent of the mills had an average lead time more than 21 days.
From the distribution of average lead time among the three segment of mills classified it was inferred that there was no significant difference between the three segments of mills with regard to the average lead-time of purchases.

The analysis on the textile mills policy of holding inventory showed that 16.0 per cent of the mills had a policy of holding 15 days stock; 66.7 per cent of mills had a policy of holding 30 days stock; 4.0 per cent of the mills had a policy of holding 60 days stock; and the remaining 13.3 per cent had the policy of holding stocks for more than 60 days.

The distribution of the policy of holding inventory in stores by the mills among the three segment of mills classified showed that there was no significant difference between the three segments of mills with regard to the policy of holding inventory in stores.

The policy of holding inventory in stores had a positive correlation with the average lead-time of purchases, but the extent of correlation was not so significant.

Thirty eight of the 75 mills studied used a codification system to identify the items whereas the remaining 37 mills did not use any codification system to identify the items. Of the 38 mills who used a codification system to identify the
items; 42.1 per cent of the mills were using numerical codification system; another 42.1 per cent of the mills were using an alphabetical codification system; and 15.8 per cent of the mills had used an alphanumerical codification system.

From the distribution of the codification system used by the stores among the three segments of mills classified it could be inferred that there was a significant difference between the three segments of mills with regard to the codification system used in stores.

Twenty nine of the 75 mills had followed a scientific procedure to control inventory and the remaining 46 mills did not follow any such procedure. Of 29 mills following a scientific procedure, 27.6 per cent of the mills had followed bin card system in the stores; 6.9 per cent of the mills followed kardex system in the stores; 24.1 per cent followed computerised system in the stores; and 41.4 per cent followed other methods like stock record, ledger maintenance and verification of the stores to control inventory.

Fifty five of the 75 mills studied had determined the stock levels to manage the stores and 20 mills did not determine the stock levels to manage the stores.

The distribution of the determination of stock levels by the stores among the three segments of mills classified showed that there was no significant difference
between the three segments of mills with regard to the determination of stock levels by the stores.

The analysis on re-order period of the stores showed that, 8.0 per cent of the mills had re-ordered over a fixed time period for replenishment of stock; 50.7 per cent of the mills had re-ordered on reaching fixed inventory level for replenishment of stock; and 41.3 per cent of the mills had re-ordered only when inventory was needed.

Twenty four of the 75 mills studied used some of the scientific inventory control techniques whereas the remaining 51 mills did not use any scientific technique for controlling inventory in stores.

Seventy of the 75 mills studied had a proper system of records management while 5 mills did not have a proper system. Of the 70 mills which were following a proper system of recording, 65.7 per cent of the mills had followed the manual system for records management; 27.1 per cent of the mills had followed computerised system for records management; and 7.2 per cent of the mills had followed both the manual and computerised system of records management in stores.
Fifty six of the 75 mills studied had followed a system of verification and 19 mills did not follow any system of verification of the stores. Of the 56 mills which had followed a system of verification, 39.3 per cent of the mills had followed an annual verification procedure; 5.4 per cent of the mills had followed a half-yearly verification procedure; 19.4 per cent of the mills had followed quarterly verification procedure; 28.6 per cent of the mills had followed a monthly verification procedure; and 7.3 per cent of the mills had followed other verification procedure like three months verification or regular verification procedures.

Sixty one of the 75 mills studied, were analysing the inventory turnover of the mills whereas the remaining 14 mills did not analyse the inventory turnover. Of the 61 mills which analysed the inventory turnover, 23.0 per cent of the mills had a turnover ranging between 0 - 1.99 per cent; 19.7 per cent of the mills had a turnover ranging between 2 - 2.99 per cent; 34.4 per cent of the mills had a turnover ranging between 3 - 3.99 per cent; 4.9 per cent of the mills had a turnover ranging between 4 - 4.99 per cent; and 18.0 per cent of the mills had a turnover more than 5 per cent.

Variance analysis was done for the inventory turnover between the three segments of mills classified and it could be inferred that there was a significant difference between the inventory turnover and the three segments of mills.
Further it could be inferred that, mills below 25000 spindles had a lower mean value indicating that they had a lower inventory turnover when compared to the population.

't' test had been carried out between the two variables inventory turnover and the inventory tool usage of textile mills and it was inferred that there was no significant difference between the inventory turnover and the use of inventory tools by the mills.

't' test had been carried out between the two variables inventory turnover and the stores verification system of the textile mills and it was inferred that there was a significant difference between the inventory turnover and the verification system followed by the mills.

Fifty nine of the 75 mills studied had Non-moving items (NMI) in stores and 16 mills did not have Non-moving items in stores. Of the 59 textile mills having NMIs, 88.1 per cent of the mills had less than 50 non-moving items; 1.7 per cent of the mills had non-moving items ranging between 51-150; 8.5 per cent of the mills had non-moving items ranging between 151-300; 1.7 per cent of the mills had more than 300 non-moving items in the stores.
The distribution of accumulation of Non-moving items in stores among the three segments of mills showed that there was a significant difference between the three segments of mills with regard to the accumulation of non-moving items in stores.

The data on textile mills having non-moving items showed that the various items which included in the non-moving category were spare parts of machines, bearings, gear wheels, travellers, pulleys, old machine's shafts and generator spares.

The data on 59 textile mills having non-moving items showed that, 57 mills had identified the reasons for the NMIs and 2 mills had not identified the reasons for the non-moving items. Of the 57 mills which had identified the reasons for the NMIs showed that continual use of old machines, change of technology, count changes, higher lead time for critical components, sold out machine spares and imported machines were the reasons for the accumulation of non-moving items in stores.

Of the 59 mills having NMIs, 46 mills were following a systematic procedure to check the NMIs and 13 mills were not following any procedure to check the NMIs. 37.0 per cent of 46 mills which had followed a procedure carried out a continuous assessment of the NMIs; 52.2 per cent of the mills had carried out a
periodical check of the NMIs; 6.5 per cent of the mills had carried out an annual check of the NMIs; and 4.3 per cent of the mills had carried out other modes of checking like verification of the records.

From the analysis of the 59 mills having NMIs on the measures taken to avoid non-moving items, 35 mills only took some measures like stocking, disposing, reducing ordering and proper planning to avoid the accumulation of non-moving items whereas the remaining 24 mills did not take any measure to avoid the accumulation of non-moving items in the stores.

Of the 35 mills, 31.4 per cent of the mills had stocked the non-moving item for future requirement; 28.6 per cent of the mills had disposed the non-moving items; 5.7 per cent of the mills had reduced the ordering of such items; and 34.3 per cent of the mills had concentrated on proper planning of the inventory to avoid the accumulation of non-moving items in stores.

Out of the 59 mills having non-moving items, 52.5 per cent of the mills had an investment (money) block in non-moving item of less than 0.25 per cent of their annual sales turnover; 23.7 per cent of the mills had an investment block in non-moving item between 0.26 and 0.50 percent of their annual sales turnover; 5.1 per cent of the mills had an investment block in non-moving item between 0.51 and 0.75 percent of their annual sales turnover; 10.2 per cent of the mills had an
investment block in non-moving item between 0.76 and 1.00 percent of their annual sales turnover; and 8.5 per cent of the mills had an investment block of more than 1.00 per cent of their annual sales turnover.

The distribution of the amount of money blocked in non-moving items among the three segments of the mills showed that there was a significant difference between the three segments of mills with regard to the amount of money blocked in non-moving items in stores.

Sixty nine of the 75 mills studied were having a full-fledged maintenance team and 6 mills were not having a full-fledged maintenance team. 49 of the 69 mills, which were having a maintenance team, had been affected by the non-availability of spares and the remaining 20 mills were not affected by the non-availability of spares in stores. 30.7 per cent of the mills were having very rare breakdown; 40.0 per cent of the mills had 1-2 breakdown per week; and 29.3 per cent of the mills had faced 1-2 breakdowns per month.

The distribution of the frequency of breakdowns of the machines among the three segments of the mills it could be showed that there was a significant difference between the three segments of mills with regard to the frequency of machine breakdowns.
Variance analysis was done for the number of employees in stores between the three segments of mills classified and it was inferred that there was a significant difference between the number of employees in stores and the three segments of mills. Further it was inferred that, mills which were having 25000 and above spindles had higher mean value than the population mean indicating that they had higher number of employees in stores when compared to the population.

Variance analysis was done for the per cent of employees in stores in relation to the mills between the three segments of mills classified and it was inferred that there was a significant difference between the per cent of employees in stores in relation to the total employees of the mills and the three segments of mills. Further it was inferred that, mills below 25000 spindles had higher mean value indicating that they had higher percentage of employees in stores in relation to the total number of employees in mills when compared to the population.

Only 32 of the 75 mills studied were using the computers and the remaining 43 mills were not using the computers in the stores management.

't' test had been carried out between the two variables inventory turnover and the use of computers in stores management and it was inferred that there was a significant difference between the inventory turnover and the use of computers in stores by the mills at 1 per cent confidence level.
The analysis of the investment in stores in relation to the sales turnover showed that 42.7 per cent of the mills had an investment in stores of less than 1.00 per cent; 20.0 per cent of the mills had an investment in stores between 1.00 and 1.99 per cent; 21.3 per cent of the mills had an investment in stores between 2.00 and 2.99 per cent; 2.7 per cent of the mills had an investment in stores between 3.00 and 3.99 per cent; and 13.3 per cent of the mills had an investment more than 4.0 per cent in stores in relation to the sales turnover.

Variance analysis was done for the percentage of investment in stores in relation to annual sales turnover between the three segments of mills classified and it was inferred that there was no significant difference between the per cent investment in stores in relation to the annual sales turnover and the three segments of mills. Further it was inferred that, mills above 25000 spindles and below 10000 spindles had higher mean value indicating that they had a higher percentage of investment in stores in relation to the annual sales turnover when compared to the population.

Percentage of investment in stores in relation to annual sales turnover had a high degree of positive correlation with the mills inventory turnover at 1 per cent confidence level.
The analysis of the investment Non-moving items (NMI) in relation to investment in stores showed that 50.7 per cent of the mills had an investment in NMI between 0 and 5 per cent; 25.3 per cent of the mills had an investment in NMI between 5.01 and 10.0 per cent; 8.0 per cent of the mills had an investment in NMI between 10.1 and 15.0 per cent; and 16.0 per cent of the mills had an investment in NMI between 15.1 and 20.0 per cent in relation to the stores investment.

Variance analysis was done for the percentage of investment in non-moving items in relation to investment in stores between the three segments of mills classified and it was inferred that there was a significant difference between the per cent investment in non-moving items in relation to the investment in stores and the three segments of mills. Further it was inferred that, mills with the spindlage of 10000-25000 had higher mean value indicating that they had a higher percentage of investment in non-moving items in relation to the investment in stores when compared to the population.

From the analysis of the investment Non-moving items (NMI) in relation to the sales turnover it could be clearly seen that 90.7 per cent of the mills had an investment in NMI between 0 and 0.25 per cent; 2.7 per cent of the mills had an investment in NMI between 0.26 and 0.5 per cent; 1.3 per cent of the mills had an investment in NMI between 0.51 and 0.75 per cent; and 5.3 per cent of the
mills had an investment in NMI between 0.76 and 1.0 per cent in relation to the annual sales turnover.

Variance analysis was done for the percentage of investment in non-moving items in relation to annual sales turnover between the three segments of mills classified and it was inferred that there was no significant difference between the percentage investment in non-moving items in relation to the annual sales turnover and the three segments of mills. Further it could be inferred that mills below 10000 spindles had a higher mean value indicating that they had a higher percentage of investment in non-moving items in relation to the annual sales turnover when compared to the population.

Percentage of investment in stores in relation to annual sales turnover had a high degree of positive correlation with the number of non-moving items in stores at 1 per cent confidence level.

The following recommendations emerge from the study:

1. If efforts are taken and proper coordination is built in with the supplier, the textile mills can make an attempt on implementing Just-in-Time inventory practices. This recommendation is made keeping in mind that most of the textile mills spare parts manufacturers are located in Coimbatore district.
2. The textile mills should understand the need for scientific procedures in stores management and may take necessary steps in following some of the scientific techniques in controlling inventory depending on their need.

3. In today's environment, information technology plays an important role to management. The use of computers by the mills in stores should be improved. This will help the mills for a better management of stores to improve their efficiency.

The following research studies may be undertaken.

1. We may get a better perspective of the stores management system of the textile mills if the study is carried out on a wider basis all over the country.

2. Further research can be carried out on the consumption pattern of the various stores items to determine the stock levels to be maintained in stores.

3. Implementation of Just-in-Time inventory practices largely depends upon the coordination of the buyer and supplier. A study in this area to know the extent of textile mills spare parts suppliers / manufacturers
support to the textile mills can be done to help the textile mills to implement Just-in-Time inventory practices.

Changes occur everywhere and at all times. The key to survival lies in a company's ability to follow and maintain an effective system to match it. With the traditionally low profit margins of the textile industry, managing for profitability in textiles means controlling costs. Controlling of stores cost should not be treated as synonymous with reduction in cost, but should be taken as optimization of cost. As such, the cost of inventory represents capital tied up in the business. It is necessary that there should be a proper stores management system for combined economy and service to the enterprise. The end objective of stores management must be guided by the need to have correct quantities of materials on hand with a minimum investment consistent with expediency. For this purpose, new tools of management are constantly being evolved and used. Among them the techniques of operations research and use of computers are the latest. It is worthwhile to make inventory control effective by the stores in order to maintain a flow of materials needed for the efficient production at the optimum cost.